# Nyquist-Rate D/A Converts

- Four main types
  - Decoder-based
  - Binary-weighted
  - Thermometer-code
  - Hybrid

### **Decoder-Based DAC**

- Most straight forward approach
  - create 2<sup>N</sup> reference signals and pass the appropriate signal to the output
- Three main types
  - Resistor string
  - Folded resistor-string
  - Multiple resistor-string

# **Resistor String DAC**

- Example 1: a 3-bit DAC with transmission-gate, tree-like decoder
  - Transmission gates might be used rather than n-channel switches
    - 1. extra drain and source capacitance(to GND) is offset by the reduced switch

resistance

- 2. larger layout
- 3. can operate closer to positive supply voltage
- Only n-channel switches are used
  - 1. about the same speed as the R transmission gate implementation
  - 2. compact layout(no contacts are required in the tree)



# Resistor String DAC (Cont.)

- Monotonicity is guaranteed (if the buffer's offset does not depend on its input voltage)
- The accuracy of this DAC depends on the type of resistor used. Polysilicon(20-30  $\Omega$ /square) can have up to 10 bits of accuracy

-Speed:

can be estimated using open-circuit time-constant approach (refer to microelectronics textbook written by Sedra and Smith)

Time-constant  $\approx 3 R_{tr}C_{tr}+2 \bullet 3 R_{tr}C_{tr}+\dots+N \bullet 3R_{tr}C_{tr}$ 

=N(N+1)/2 \*3 R<sub>tr</sub>C<sub>tr</sub>

where  $R_{tr}$  is on resistance of switches

 $C_{tr}$  is drain or source capacitance of switches N is bit number

# Resistor String DAC (cont.)

- Example 2: a 3-bit DAC with digital decoding
  - compared to Example1
    - 1. higher speed
    - 2. more area for decoding circuit
  - $\begin{array}{ll} & speed: & 2^{N} resistors \\ & Time-constant \approx R_{tr} \bullet 2^{N} C_{tr} \end{array} \\ & For N \leq 6 \ Example \ 2 \ is \ faster \\ & For N > 7 \ Example \ 1 \ is \ faster \end{array}$
- compromis between Examples 1 and 2

=>Folded resistor-string DAC



# Folded Resistor-String DAC



# Folded Resistor-String DAC (Cont.)

- Reduce the amount of digital decoding
- Reduce large capacitive loading
- Decoding is very similar to that for a digital memory
- Example:

4 bit (=2 bit+2 bit) DAC

Time constant  $\approx R_{tr} (2^2 C_{tr}) + 2 R_{tr} (2^2 C_{tr})$ 

• other design examples

12 bit=6 bit+6 bit, or 4 bit+4 bit+4 bit, or.....

10 bit=5 bit+5 bit, or 3 bit+3 bit+4 bit, or.....

# Multiple Resistor-string DAC

- 6-bit example
- Requires only 2•2<sup>N/2</sup>resistors
- Monotonic if OPAMPS have matched, voltage-insensitive offset voltages.
- For high speed, OPAMPS must be fast.

For high resolution, OPAMPS must be low noise.

• The matching requirements of the second resistor string are not nearly as severe as those for the first string.



 The second resistor string is used to decode only lower-order bits

Prof. Tai-Haur Kuo, EE, NCKU, 2000

#### Signed Outputs

- Negative output voltages are required. Two popular methods
  - 1. The bottom of the resistor string can be connected to -Vref
    - requires a negative power supply
    - circuits are needed to realize a dual power supply
    - high cost if the negative supply is obtained off chip
  - 2. Using SC inverting amplifier
    - realizes a signed output from a unipolar (positive) DAC output
    - b<sub>1</sub> high causes a negative output



# Binary-Weighted (or Binary-Scaled) Converters

An appropriate set of signals that are all related in a binary fashion

The binary array of signals might be voltages, charges, or currents

 Binary-weighted resistor DAC Reduced-resistance-ratio ladders
 R-2R-based DAC
 Charge-redistribution switched-capacitor DAC

Current-mode DAC

### **Binary-Weighted Resistor DAC**

- 4-bit example • 4-bit example •  $V_{out}$   $P_{2R}$   $P_{4R}$   $P_{R}$   $P_{4R}$   $P_{R}$   $P_{16R}$   $P_{16R}$  $P_$
- Does not require many resistors or switches
- Disadvantages
  - Resistor ratio and current ratio are on the order of 2<sup>N</sup>. If N is large, this large current ratio requires that the switches also be scaled so that equal voltage drops appear across them.
  - 2. monotonicity is not guaranteed
  - 3. prone to glitches

# Reduced-Resistance-Ratio Ladders

- Reduce the large resistor ratios in a binary-weighted array
- Introduce a series resistor to scale signals in portions of the array  $V_A$ =-1/4  $V_{ref}$



- An additional 4R was added such that resistance seen to the right of the 3R equals R.
- One-fourth the resistance ratio compared to the binaryweighted case
- Current ratio has remained unchanged
  =>Switches must be scaled in size
- Repeating this procedure recursively, one can obtain an R-2R ladder

#### **R-2R-Based DAC**

- Smaller size and better accuracy than a binary-sized approach
  - 1. small number of components
  - 2. resistance ratio of only 2
- 4-bit example

$$I_r = \frac{V_{ref}}{2R}$$



Current ratio is still large
 =>large ratio of switch sizes

Prof. Tai-Haur Kuo, EE, NCKU, 2000

#### R-2R-Based DAC (Cont.)

- R-2R ladder DAC with equal currents through switches
  - slower since the internal nodes exhibit some voltage swings(as opposed to the previous configuration where internal nodes all remain at fixed voltage)



**Charge-Redistribution Switched-Capacitor DAC** 

- Insensitive to OPAMP input-offset voltage, 1/f noise, and finite amplifier gain
- An additional sign bit can be realized by interchanging the clock phases(shown in parentheses)



# Current-Mode DAC

- High-speed
- Switch current to output or to ground
  The output current is converted to a voltage through R<sub>F</sub>
- The upper portion of current source always remains at ground potential.



### <u>Glitches</u>

- A major limitation during high-speed operation
- Mainly the result of different delays occuring when switching different signals
- Example: 01111.....1--->1000 .....0
  - 1.  $I_1$  represents the MSB current, and  $I_2$  represents the sum of (N-1) LSB currents.
  - 2. The MSB current turns off slightly early, causing a glitch of zero current



# Glitches (Cont.)

- Glitch disturbance can be reduced by
  - 1. limiting the bandwidth (placing a capacitor across  $\rm R_{\rm F}$ ) This method slows down the circuit.
  - 2. using a sample and hold on the output signal.
  - 3. modifying some or all of the digital word from a binary code to a thermometer code.
  - (3. is the most popular method.)

# Thermometer-Code DACs

• Digitally recode the input to a thermometer-code equivalent

|         | Binary |    |    | Thermometer Code |    |    |    |    |    |    |
|---------|--------|----|----|------------------|----|----|----|----|----|----|
| Desires |        |    | -  |                  |    |    |    |    |    |    |
| Decimal | b1     | b2 | b3 | d1               | d2 | d3 | d4 | d5 | d6 | d7 |
| 0       | 0      | 0  | 0  | 0                | 0  | 0  | 0  | 0  | 0  | 0  |
| 1       | 0      | 0  | 1  | 0                | 0  | 0  | 0  | 0  | 0  | 1  |
| 2       | 0      | 1  | 0  | 0                | 0  | 0  | 0  | 0  | 1  | 1  |
| 3       | 0      | 1  | 1  | 0                | 0  | 0  | 0  | 1  | 1  | 1  |
| 4       | 1      | 0  | 0  | 0                | 0  | 0  | 1  | 1  | 1  | 1  |
| 5       | 1      | 0  | 1  | 0                | 0  | 1  | 1  | 1  | 1  | 1  |
| 6       | 1      | 1  | 0  | 0                | 1  | 1  | 1  | 1  | 1  | 1  |
| 7       | 1      | 1  | 1  | 1                | 1  | 1  | 1  | 1  | 1  | 1  |

Thermometer-code representations for 3-bit binary values

- Advantages over its binary-weighted counterpart
  - 1. low DNL errors
  - 2. guaranteed monotonicity
  - 3. reduced glitching noise
- Does not increase the size of the analog circuitry compared to a binary-weighted approach

# Thermometer-Code DACs (Cont.)

 Total area required by the transistor switches is the same (compared to binary-weighted)
 All transistor switches are of equal sizes since they all pass

equal currents

- Examples
  - 1. thermometer-code resistor DAC



#### Thermometer-Code DACs (Cont.)

2. thermalmeter-code charge-redistribution DAC



# Thermometer-Code Current-Mode DAC

- Row and column decoders
- Inherent monotonicity
- Good DNL errors

INL errors depend on the placement of the current sources

- In high-speed applications
  - 1. The output current feeds directly into an off-chip 50  $\Omega$  or

75  $\Omega$  resistor, rather than an output OPAMP.

2. Cascode current sources are used to reduce current-source variation due to voltage changes in  $V_{out}$   $\overbrace{}$   $\overbrace{$   $\overbrace{}$   $\overbrace{$   $\underset{}$   $\overbrace{}$   $\overbrace{$   $\underset{}$   $\overbrace{}$   $\overbrace{}$   $\overbrace{}$   $\overbrace{$   $\overbrace{}$   $\overbrace{}$   $\overbrace{$   $\overbrace{}$   $\overbrace{}$   $\overbrace{}$   $\overbrace{$   $\overbrace{}$   $\overbrace{}$   $\overbrace{$   $\underset{}$   $\overbrace{}$   $\overbrace{$   $\underset{}$   $\underset{$   $\underset{}$   $\underset{$   $\underset{}$   $\underset{$   $\underset{}$   $\underset{$   $\underset{}$   $\underset{$   $\underset{$   $\underset{}$   $\underset{$   $\underset{}$   $\underset{$   $\underset{}$   $\underset{$   $\underset{}$   $\underset{$   $\underset{$   $\underset{}$   $\underset{$   $\underset{}$   $\underset{$   $\underset{$   $\underset{}$   $\underset{$   $\underset{$   $\underset{}$   $\underset{$   $\underset{$   $\underset{}$   $\underset{$   $\underset{}$   $\underset{$   $\underset{}$ 

All current sources are of equal values.

000

### Thermometer-Code Current-Mode DAC (Cont.)



Thermometer-Code Current-Mode DAC (Cont.)

- Precisely timed edges are needed
  - 1. If both  $\overline{d}_i$  and  $d_i$  are low simultaneously, the drain of  $Q_3$  is pulled low and the circuit takes longer time to respond.
  - 2. If both  $\overline{d_i}$  and  $d_i$  are high simultaneously,  $V_{out}$  is shorted to ground.
- To avoid the use of the two logic levels, the gate of *Q*<sub>2</sub> should be connected to a dc bias voltage

<u>Thermometer-Code Current-Mode DAC (Cont.)</u>



- Can be clocked at the maximum rate without the need for precisely timed edges
- $Q_2$  and  $Q_3$  effectively form a cascode current source when they drive current to the output.
- To maximize speed, the voltage swing at the common connection (e.g.  $Q_1$ ,  $Q_2$  and  $Q_3$ ) of the current switches should be small.

# **Dynamically Matched Current Sources**

- A method for realizing very well-matched current sources (up to 10-bit accuracy) for audio DACs
- Continuously and cyclically calibrate MSB portions
- 16 bit example



# Dynamically Matched Current Sources (Cont.)



- 1. 6MSBs were realized using a thermometer code
- 2. Since the accuracy requirements are reduced for the remaining bits, a binary array was used in their implementation.

# Dynamically Matched Current Sources (Cont.)

- 3. 64 accurately matched current sources for the 6 MSBs
  - current sources are calibrated
  - dynamically setting current sources
  - even though only 63 are required, the extra one is needed so that DAC can continuously operate when one of them is being calibrated
- 4. major limitation in matching 64 current sources is due to the differences in clock feedthrough and charge injection switches  $S_i$ 
  - the best way is to minimize them
    - $\Rightarrow$  large  $C_{gs}$  and large  $V_{gs}$  of  $Q_1$
    - $\Rightarrow$  Q<sub>1</sub> only source a small current
    - $\Rightarrow W_{small}$  can be used for  $Q_1$

# Dynamically Matched Current Sources (Cont.)

- large  $C_{gs}$  to minimize leakage current effect before current sources are recalibrated
- dummy transistor can be added to  $S_i$
- other methods to minimize these errors are referred to switched-current (SI) papers

# Hybrid Converters

- Combine the advantages of different approaches
- It's quite common to use a thermometer-code approach for the top few MSBs while using a binary-scaled technique for the lower LSBs
  - glitching is significantly reduced and accuracy is high
  - circuit area is saved with a binary-scaled approach for LSBs
- Examples
  - 1. Resistor-capacitor hybrid DAC
  - 2. Segmented DAC