Circuit Characterization and
 Performance -Estimation

(Teaching Material is from chapter)

- Resistance Estimation
- Capacitance Estimation
- Switching Characteristics
- Inverter-pair delay
- Driving Large Capacitive Loads
- Dynamic Power Dissipation
- Scaling of MOS Transistor Dimensions

Resistance Estimation

- Sheet Resistance

$$
\begin{aligned}
& \mathrm{R}=\frac{\rho}{\mathrm{t}}\left(\frac{\mathrm{~L}}{\mathrm{~W}}\right)=\mathrm{Ro}\left(\frac{\mathrm{~L}}{\mathrm{~W}}\right) \\
& \mathrm{R}=\frac{\rho}{\mathrm{t}}
\end{aligned}
$$

ρ : resistivity
t : thickness
L: conductor length
W: conductor width
Ra: sheet resistance ($\mathrm{ohm} /$ square,$~ \Omega / \square$)

- Typical sheet resistance for conductors

Material	Min	Typical	Max.
Intermetal	0.05	0.07	0.1
$\quad($ metal1-metal2)			
Top-metal(metal3)	0.03	0.04	0.05
Polysilicon	15	20	30
Silicide	2	3	6
Diffusion(n $\mathrm{n}^{+}, \mathrm{p}^{+}$)	10	25	100
Silicided diffusion	2	4	10
n -well	1 K	2 K	5 K

Resistance Estimation of Nonrectangular

Shapes

- Direct estimation

- Table-assisted estimation

Contact and Via Resistance

- propotional to the area of the contact, e.g. feature size $\downarrow \Rightarrow$ Recontact \uparrow
- $0.25 \Omega \sim$ a few tens of $\Omega \mathrm{s}$
- Multiple contacts to obtain low-resistance interlayer connections

MOS - Capacitor Characteristics

- C - V plot

- Three regions in the plot
(i) accumulation region
(ii) depletion region
(iii) inversion region
- Accumulation region

$$
C_{o}=\frac{\varepsilon_{\operatorname{sio2} \varepsilon_{o}}}{t_{0 x}} A=C_{o x} \cdot A
$$

C_{o} : gate capacitance
$\varepsilon_{\mathrm{SiO}_{2}}:$ dielectric constant of $\mathrm{SiO}_{2}(=3.9)$
$\mathcal{E}_{\mathrm{o}}:$ permittivity of free space

A : gate area
$C_{O X}=\frac{\varepsilon_{\operatorname{sio} 2} \mathcal{E}_{O}}{t_{o x}} ;$ gate capacitance per unit area

MOS - Capacitor Characteristics (Cont.)

- Depletion region $\mathrm{C}_{\mathrm{dep}}=\frac{\varepsilon_{\mathrm{si}} \boldsymbol{\varepsilon}_{\mathrm{o}}}{\mathrm{d}} \mathrm{A}$
d : depletion layer depth
$\mathcal{E}_{\text {si }}:$ dielectric constant of $\mathrm{Si}(=12)$

$\mathrm{C}_{\mathrm{gb}}=\frac{\mathrm{C}_{0} \mathrm{C}_{\mathrm{dep}}}{\mathrm{C}_{\mathrm{o}}+\mathrm{C}_{\mathrm{dep}}}$
Where Co is low frequency capacitance between gate and surface
- Inversion region

R $\mathrm{C}_{\text {min }}$

$-\mathrm{C}_{\text {dep }}$ depends on the depth of the depletion region, i.e. depends on substrate doping density.

- For $\mathrm{t}_{\mathrm{ox}}=100 \sim 200$ 4, $\mathrm{C}_{\text {min }} / \mathrm{C}_{\mathrm{o}}$ varies from $0.02 \sim 0.3$ for substrate doping density varies from $1 \times 10^{-14} \mathrm{~cm}^{-3}$ to $5 \times 10^{-15} \mathrm{~cm}^{-3}$

MOS Device Capacitances

- Cross section of MOS device GATE

SUBSTRATE

- Equivalent circuit

- Approximation of gate capacitance
- Self-aligned process is assumed (ie. overlap caps. are negligible)

Parameter	off	Non-saturated	Saturated
C_{gb}	$\frac{\varepsilon \mathrm{A}}{\mathrm{t}_{\mathrm{ox}}}$	0	0
C_{gs}	0	$\frac{\varepsilon A}{2 \mathrm{t}_{\mathrm{ox}}}$	$\frac{2 \varepsilon \mathrm{~A}}{3 \mathrm{t}_{\mathrm{ox}}}$
C_{gd}	0	$\frac{\varepsilon A}{2 \mathrm{t}_{\mathrm{ox}}}$	0 (finite for short channel
$\mathrm{C}_{\mathrm{g}}=\mathrm{C}_{\mathrm{gb}}+\mathrm{C}_{\mathrm{gs}}+\mathrm{C}_{\mathrm{gd}}$	$\frac{\varepsilon \mathrm{A}}{\mathrm{t}_{\mathrm{ox}}}$	$\frac{\varepsilon A}{\mathrm{t}_{\mathrm{ox}}}$	$\frac{2 \varepsilon \mathrm{~A}}{3 \mathrm{t}_{\mathrm{ox}}} \rightarrow$

$\underline{\mathrm{C}_{\mathrm{gs}}, \mathrm{C}_{\mathrm{gd}} \text {, and } \mathrm{C}_{\mathrm{ox}}}$

- Example 1: W=49.2 $\mu \mathrm{m}, \mathrm{L}=4.5 \mu \mathrm{~m}$ (long channel)
- C_{gs} and C_{gd} $\swarrow^{\text {large } \mathrm{L}}$ $*$ large $\mathrm{C}_{\mathrm{g}} \&$ small C_{gd} (in saturation region)
$\frac{\mathrm{C}_{\mathrm{gd}}}{\mathrm{C}_{\mathrm{g}}} \approx 0$
(C_{gd} is due to channel side fringing fields between
gate and drain.)

- Example 2: $\mathrm{L}=0.75 \mu \mathrm{~m}$ (short channel) $-\mathrm{C}_{\mathrm{gs}}$ and C_{gd} $*$ small $\mathrm{C}_{\mathrm{g}} \&$ small C_{gd} (in saturation region)
$\frac{\mathrm{C}_{\mathrm{gd}}}{\mathrm{C}_{\mathrm{g}}} \approx 0.2$
(C_{gd} is due to channel side
fringing fields
between
gate and drain.)

C_{ox}, gate capacitance per unit area

$-\mathrm{C}_{\mathrm{ox}}=\frac{\varepsilon_{\mathrm{Sio}_{2}} \varepsilon_{0}}{\mathrm{t}_{\mathrm{ox}}} ;$ where $\varepsilon_{\mathrm{sio}_{2}}=3.9$ and $\varepsilon_{0}=8.854 \times 10^{-14}$

- e.g. $\mathrm{t}_{\mathrm{ox}}=350 \AA=>\mathrm{C}_{\mathrm{ox}} \approx 1 \times 10^{-3} \mathrm{pF} / \mu \mathrm{m}^{2}=1 \mathrm{fF} / \mu \mathrm{m}^{2}$
- Unit transistor
-It is the same width as a metal-diffusion contact

- minimum-size transistor

Diffusion Capacitance

- area and periphery

$\mathrm{Cd}=\mathrm{Cja} *(\mathrm{ab})+\mathrm{Cjp} *(2 \mathrm{a}+2 \mathrm{~b})$

Cja: junction capacitance per $\mu \mathrm{m}^{2}$
Cjp: periphery capacitance per $\mu \mathrm{m}$
a: width of diffusion region
b : length of diffusion region

- Typical value($1 \mu \mathrm{~m}$ n-well process)

$$
\begin{array}{rl}
\mathrm{Cja}= & 2 * 10^{-4} \mathrm{PF} / \mu \mathrm{m}^{2} \quad\left(\mathrm{n}^{+} \text {diffusion }\right) \\
5 & * 10^{-4} \mathrm{PF} / \mu \mathrm{m}^{2} \quad\left(\mathrm{p}^{+} \text {diffusion }\right) \\
\mathrm{Cjp}= & 4 * 10^{-4} \mathrm{PF} / \mu \mathrm{m}^{2} \quad\left(\mathrm{n}^{+} \text {diffusion }\right) \\
& 4 * 10^{-4} \mathrm{PF} / \mu \mathrm{m}^{2} \quad\left(\mathrm{p}^{+} \text {diffusion }\right)
\end{array}
$$

- Voltage dependent V_{j} is junction voltage

SPICE Modeling of MOS Capacitances

- SPICE example

```
M14350 NFET W=4U L=1U AS=15P AD=15P PS=11.5U PD=11.5U
.MODEL NFET NMOS
+ TOX= 100E-8
+ CGBO=200P CGSO=600P CGDO=600P
+ CJ=200U CJSW=400P MJ=0.5 MJSW=0.3 PB=0.7
+ .....
```

- node4 - drain
node3 - gate
node5 - source
node0 - substrate
- channel width $=4 \mu \mathrm{~m}$
channel length $=1 \mu \mathrm{~m}$
$\mathrm{TOX}=100 \AA$
- source area AS $=15 \mu \mathrm{~m}^{2}$
drain area $A D=15 \mu \mathrm{~m}^{2}$
- source periphery $\mathrm{PS}=11.5 \mu \mathrm{~m}$
drain periphery $\mathrm{PD}=11.5 \mu \mathrm{~m}$
- $\mathrm{C}_{\mathrm{gbo}}$ occurs due to the polysilicon extension beyond the channel . ($200 \times 10^{-12} \mathrm{~F} / \mathrm{M}$)
$\mathrm{C}_{\mathrm{gso}}$ and $\mathrm{C}_{\mathrm{gdo}}$ represent the gate-to-source/drain capacitance due to overlap in the physical structure of the transistor . ($600 \times 10^{-12} \mathrm{~F} / \mathrm{M}$)

SPICE Modeling of MOS Capacitances (Cont.)

- Capacitance

- gate capacitance

$$
\begin{aligned}
\mathrm{Cg}_{\text {(intrinsic) }} & =\mathrm{W} \cdot \mathrm{~L} \cdot \mathrm{C}_{\mathrm{ox}}=4 \times 1 \times 35 \times 10^{-4} \mathrm{PF}=0.014 \mathrm{PF} \\
\mathrm{Cg}_{\text {(extrinsic) }} & =\left(\mathrm{W} \cdot \mathrm{C}_{\mathrm{gs} 0}\right)+\left(\mathrm{W} \cdot \mathrm{C}_{\mathrm{gd} 0}\right)+\left(2 \mathrm{~L} \cdot \mathrm{C}_{\mathrm{gb} 0}\right) \\
& =4 \times 6 \times 10^{-4}+4 \times 6 \times 10^{-4}+2 \times\left(1 \times 2 \times 10^{-4}\right) \mathrm{PF} \\
& =0.0052 \mathrm{PF} \\
& =\mathrm{Cg}_{\text {(intrinsic) }}+\mathrm{Cg}_{\text {(extrinsic) }} \approx 0.02 \mathrm{PF}
\end{aligned}
$$

- source and drain capacitance
$C j=\left(\right.$ Area $\left.\cdot C j \cdot\left(1+\frac{V J}{P B}\right)^{-M J}\right)+\left(\right.$ periphery $\left.\cdot C J S W \cdot\left(1+\frac{V J}{P B}\right)^{-M J S W}\right)$
where
$C J=$ the zero-bias capacitance per junction area
$C J S W=$ the zero-bias-junction capacitance per junction periphery
$M J=$ the grading coefficient of the junction bottom
$M J S W=$ the grading coefficient of the junction sidewall
$V J=$ the junction potential
$P B=$ the built-in voltage ($\sim 0.4-0.8$ volts)
Area $=A S$ or $A D$, the area of the source or drain
Periphery $=P S$ or $P D$, the periphery of the source or drain
$\mathrm{C}_{\text {(drain) }}=0.0043 \mathrm{PF} \quad(\mathrm{VJ}=2.5 \mathrm{~V}$ is assumed $)$
$\mathrm{j}_{\text {(source) }}=0.0043 \mathrm{PF} \quad(\mathrm{VJ}=2.5 \mathrm{~V}$ is assumed $)$

Routing Capacitance

- Single wire capacitance
- parallel-plate effect and fring effect

Substrate

- Accurate capacitance evaluation: use computer
- Hand calculation: use simple model (less than 10% error)

$$
\mathrm{C}=\varepsilon\left[\left(\frac{\mathrm{W}}{\mathrm{~h}}\right)+0.77+1.06\left(\frac{\mathrm{~W}}{\mathrm{~h}}\right)^{0.25}+1.06\left(\frac{\mathrm{t}}{\mathrm{~h}}\right)^{0.5}\right]
$$

- Multiple conductor capacitances
- three-layer example

Capacitance calculation is very complex-- refer to textbook - Typical dielectric and conductor thicknesses

Thin-oxide	$200 \AA$	Metall $6000 \AA$	
Field-oxide	$6000 \AA$	$\mathrm{M}_{1}-\mathrm{M}_{2}$ oxide 6000 A	
Polysilicon	$3000 \AA$	Metal2 $12000 \AA$	
M_{1}-poly-oxide	$6000 \AA$	Passivation $20000 \AA$	

Distributed RC Effects

- Transmission line

- delay time from one end to the other end
$\mathrm{t} \cong \frac{\mathrm{rc}}{2} \mathrm{l}^{2}$
r : resistance per unit length
c: capacitance per unit length
1: length of the wire
- Disadvantages of long wire:
(1) long long delay
(2) reduction in sensitivity to noise

Distributed RC Effects (Cont.)

- Method to improve disadvantages mentioned previously

delay $\approx \frac{\mathrm{rc}}{2}\left(\frac{1}{2}\right)^{2}+\tau_{\mathrm{g}}+\frac{\mathrm{rc}}{2}\left(\frac{1}{2}\right)^{2}$

$$
\approx \frac{\mathrm{rcl}^{2}}{4}+\tau_{\mathrm{g}}
$$

- If $\left(\operatorname{rcl}^{2} / 4\right)<\tau_{\mathrm{g}}$, delay time is reduced
- If $\left(\mathrm{rcl}^{2} / 2\right) \gg \tau_{\mathrm{g}}$, more buffers should be used
- In actual design, if possible,

$$
\frac{\mathrm{rcl}^{2}}{2} \ll \tau_{\mathrm{g}} \quad==>1 \ll \sqrt{\frac{2 \tau_{\mathrm{g}}}{\mathrm{rc}}}
$$

- Transmission line effect is particularly severe in poly wire because of the relatively high resistance of this layer. Gate poly layer is the worst one because of its high capacitance to substrate.
- Strategies
- use metal line: small r
- use wider metal for signal distribution line
(e.g. clock distribution line): small r , a tiny bit large C
- Design example
refer to p. 203 of textbook

Inductance

- On-chip inductance are normally small.

Bond-wire inductance is larger.

- Inductance of bounding wires and the pins on packages

$$
\mathrm{L}=\frac{\mu}{2 \pi} \ln \left(\frac{4 \mathrm{~h}}{\mathrm{~d}}\right) \mathrm{H} / \mathrm{cm}
$$

μ : the magnetic permeability of the wire (typically $1.257^{1} 10^{-8} \mathrm{H} / \mathrm{cm}$)
h : the height above the ground plane
d: the diameter of the wire

- Inductance of on-chip wires

$$
\mathrm{L}=\frac{\mathrm{H}}{2 \pi} \ln \left(\frac{8 \mathrm{~h}}{\mathrm{w}}+\frac{\mathrm{w}}{4 \mathrm{~h}}\right) \mathrm{H} / \mathrm{cm}
$$

w: conductor width
h: the height above the substrate

Switching Characteristics

- CMOS inverter
- Circuit

- Waveform
$V_{\text {in }}(t)$
$V_{o}(t)$

- Rise time, $\mathrm{t}_{\mathrm{r}}=$ time for a waveform to rise from 10% to 90% of its steady-state value
Fall time, $\mathrm{t}_{\mathrm{f}}=$ time for a waveform to fall from 90% to 10% of its steady-state value
Delay time, $\mathrm{t}_{\mathrm{d}}=$ time difference between input transition (50\%) and the 50% output level
- Trajectory of n-transistor operating point during switching in CMOS inverter
- Input transition : $\mathrm{X}_{1} \rightarrow \mathrm{X}_{2}$

Output transition: $\underset{\text { Dds }=\mathrm{Vgs}_{2}-\mathrm{V}_{\mathrm{t}}}{\longrightarrow} \rightarrow \mathrm{X}_{3}$

Fall Time and Rise Time

- Equivalent Circuit
- Fall
$\binom{V_{\text {in }} \uparrow}{V_{0} \downarrow}$

- Rise

$$
\left(\begin{array}{cc}
V_{\text {in }} \downarrow \\
V_{0} & \uparrow
\end{array}\right)
$$

- $\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f} 1}+\mathrm{t}_{\mathrm{f} 2} \quad$; fall time

$$
\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{tn}}
$$

Fall Time and Rise Time (Cont.)

- t_{fl}
$-\mathrm{V}_{\mathrm{o}}: 0.9 \mathrm{~V}_{\mathrm{DD}} \longrightarrow \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}$
- NMOS in saturation region

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{L}} \frac{\mathrm{~d} \mathrm{~V}_{\mathrm{o}}}{\mathrm{dt}}-\frac{\beta \mathrm{n}}{2}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}\right)^{2}=0 \\
& \mathrm{t}_{\mathrm{fl}}=\frac{2 \mathrm{CL}}{\beta \mathrm{n}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tr}}\right)^{2}} \int_{\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}}^{0.9 \mathrm{~V}_{\mathrm{DD}}} \mathrm{dVo} \\
& \quad=\frac{2 \mathrm{CL}\left(\mathrm{~V}_{\mathrm{tn}}-0.1 \mathrm{~V}_{\mathrm{DD}}\right)}{\beta \mathrm{n}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tr}}\right)^{2}}
\end{aligned}
$$

- $\mathrm{t}_{\mathrm{f} 2}$
$-\mathrm{Vo}_{\mathrm{o}}: \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}} \rightarrow 0.1 \mathrm{~V}_{\mathrm{DD}}$
- NMOS in triode region

$$
\begin{gathered}
\mathrm{C}_{\mathrm{L}} \frac{\mathrm{~d} \mathrm{~V}_{\mathrm{o}}}{\mathrm{dt}}=\frac{\beta \mathrm{n}}{2}\left[2\left(\mathrm{~V}_{\mathrm{gs}}-\mathrm{V}_{\mathrm{tn}}\right) \mathrm{V}_{\mathrm{ds}}-\mathrm{V}_{\mathrm{ds}}^{2}\right] \\
\mathrm{t}_{\mathrm{f} 2}=\frac{\mathrm{V}_{\mathrm{DD}}}{\beta \mathrm{n}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}\right)} \int_{0.1 \mathrm{~V}_{\mathrm{DD}}}^{\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}} \frac{\mathrm{~d} \mathrm{Vo}_{0}}{\frac{\mathrm{~V}_{\mathrm{o}}^{2}}{2\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}\right)}-\mathrm{Vo}_{\mathrm{o}}} \\
=\frac{\mathrm{CL}}{\beta \mathrm{n}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}\right)} \ln \left(\frac{19 \mathrm{~V}_{\mathrm{DD}}-20 \mathrm{~V}_{\mathrm{tn}}}{\mathrm{~V}_{\mathrm{DD}}}\right)
\end{gathered}
$$

Fall Time and Rise Time (Cont.)

- $t_{f}=t_{f 1}+t_{f 2}$

$$
\begin{aligned}
= & \frac{2 \mathrm{CL}}{\beta_{\mathrm{n}}\left(\mathrm{~V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{tn}}\right)} \\
& \times\left[\frac{\mathrm{V}_{\mathrm{tn}}-0.1 \mathrm{~V}_{\mathrm{DD}}}{\mathrm{~V}_{\mathrm{DD}}-V_{\mathrm{tn}}}+\frac{1}{2} \ln \left(\frac{19 \mathrm{~V}_{\mathrm{DD}}-20 \mathrm{~V}_{\mathrm{tn}}}{V_{\mathrm{DD}}}\right)\right]
\end{aligned}
$$

- e.g. $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{tp}}=-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{tn}}=1 \mathrm{~V}$

$$
\mathrm{t}_{\mathrm{f}} \approx \frac{4 \mathrm{CL}}{\beta \mathrm{n} V_{\mathrm{DD}}}
$$

- Rise time

Similarly, $\mathrm{t}_{\mathrm{r}} \approx \frac{4 \mathrm{CL}}{\beta_{\mathrm{p}} \mathrm{V}_{\mathrm{DD}}}$

- For equally sized n and p devices

$$
\begin{align*}
& \beta_{\mathrm{n}}=2 \sim 3 \beta_{\mathrm{p}} \quad \text { (i.e. } \quad \mu_{\mathrm{n}}=2 \sim 3 \mu_{\mathrm{p}} \text {) } \\
& \mathrm{t}_{\mathrm{f}}=\frac{\mathrm{t}_{\mathrm{r}}}{2 \sim 3}
\end{align*}
$$

- $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}$
$\Rightarrow \beta_{\mathrm{p}}=\beta_{\mathrm{n}} \Rightarrow \omega_{\mathrm{p}} \approx 2 \sim 3 \omega_{\mathrm{n}}$
- Delay time

In most CMOS circuits, the delay of a single gate is dominated by the output rise and fall time

$$
\mathrm{t}_{\mathrm{dr}} \approx \frac{\mathrm{t}_{\mathrm{r}}}{2} \text { and } \mathrm{t}_{\mathrm{df}} \approx \frac{\mathrm{t}_{\mathrm{f}}}{2}
$$

EauivalentCircuit

- Equivalent Resistance
$-\mathrm{t}_{\mathrm{df}} \approx \frac{\mathrm{t}_{\mathrm{f}}}{2} \approx \frac{1}{2} \frac{4 \mathrm{C}_{\mathrm{L}}}{\beta_{\mathrm{n}} \mathrm{V}_{\mathrm{DD}}}=\frac{2 \mathrm{C}_{\mathrm{L}}}{\beta_{\mathrm{n}} \mathrm{V}_{\mathrm{DD}}}=\mathrm{RC}_{\mathrm{L}}$
- For minimum sized nMOS

$$
\operatorname{Req}=\frac{2}{\beta_{\mathrm{n}} \mathrm{~V}_{\mathrm{DD}}} \quad \text { where } \beta_{\mathrm{n}}=\mu_{\mathrm{A}} \mathrm{Cox}_{\mathrm{ox}} \frac{\mathrm{w}_{\mathrm{Cim}}}{\mathrm{~L}_{\text {(ini }}}
$$

- For minimum sized PMOS

$$
\begin{aligned}
& \mathrm{R}(\mathrm{PMOS})=\frac{2}{\beta_{\mathrm{p}} \mathrm{~V}_{\mathrm{DD}}}=2 \sim 3 \operatorname{Req} \\
& \text { where } \beta_{\mathrm{p}}=\mu_{\mathrm{c}} \mathrm{c}_{\mathrm{o}} \frac{\mathrm{~W}_{\mathrm{cmim}}}{\mathrm{~L}_{\text {(minis }}}
\end{aligned}
$$

- Equivalent capacitance

$$
\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{\mathrm{g}}+\mathrm{C}_{\mathrm{d}}
$$

Where C_{g} is the gate capacitance of a minimum sized transistor
C_{d} is the drain capacitance of a minimumsized transistor

Inverter-pair Delay

- CMOS ($\mu_{\mathrm{n}}=2.5 \mu_{\mathrm{p}}$ is assumed)
(a) $\mathrm{W}_{\mathrm{p}}=2.5 \mathrm{~W}_{\mathrm{n}} ; \mathrm{W}_{\mathrm{n}}$ and L are minimum size

$$
\begin{aligned}
\mathrm{t}_{\text {inv-pair }}=\mathrm{t}_{\mathrm{f}}+\mathrm{t}_{\mathrm{r}} & =3.5 \mathrm{R}_{\mathrm{eq}} \mathrm{C}_{\mathrm{eq}}+3.5 \mathrm{R}_{\mathrm{eq}} \mathrm{C}_{\mathrm{eq}} \\
& =7 \mathrm{R}_{\mathrm{eq}} \mathrm{C}_{\mathrm{eq}}
\end{aligned}
$$

(b) $\mathrm{W}_{\mathrm{p}}=\mathrm{W}_{\mathrm{n}}$; All minimum sized devices

Inverter-Pair Delay (Cont.)

- Inverter threshold voltage
$-\mathrm{V}_{\text {inv }}=\frac{\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{tp}}+\mathrm{V}_{\mathrm{tn}} \sqrt{\beta_{\mathrm{n}} / \beta_{\mathrm{p}}}}{1+\sqrt{\beta_{\mathrm{n}} / \beta_{\mathrm{p}}}}$
- Variation in $V_{\text {inv }}$ with β_{n} / β_{p} ratio

V_{DD}	V_{tn}	V_{tp}	β_{n}	β_{p}	$\mathrm{V}_{\text {inv }}$
5	.7	-.7	1	1	2.5
5	.7	-.7	.5	1	2.8
5	.7	-.7	1	.5	2.2
3	.5	-.5	1	1	1.5
3	.5	-.5	.5	1	1.67
3	.5	-.5	1	.5	1.32

- Examples: $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{tn}}=-\mathrm{V}_{\mathrm{tp}}=0.7 \mathrm{~V}, \mu_{\mathrm{n}}=2.5 \mu_{\mathrm{p}}$
(1) for $\mathrm{W}_{\mathrm{p}}=2.5 \mathrm{~W}_{\mathrm{n}}, \mathrm{V}_{\mathrm{inv}}=2.5 \mathrm{~V}$
(2) for $\mathrm{W}_{\mathrm{p}}=\mathrm{W}_{\mathrm{n}}, \mathrm{V}_{\text {inv }}=2.1 \mathrm{~V}$

For (1) \& (2), pair delay is the same and $\mathrm{V}_{\text {inv }}$ variation is 15%

- To reduce cost and power disspation, $\mathrm{W}_{\mathrm{p}}=\mathrm{W}_{\mathrm{n}}$ is usually used. However, noise margin is reduced.
- When the circuit have to drive any significant load, n and p transistors are generally sized to yield equal rise and fall time.

NMOS Inverter-Pair Delav

- Inverter-pair delay

$$
\begin{aligned}
\mathrm{t}_{\text {inv-pair }} & =4 \mathrm{R}_{\mathrm{eq}}\left(\mathrm{C}_{\mathrm{g}}+2 \mathrm{C}_{\mathrm{d}}\right)+\mathrm{R}_{\mathrm{eq}}\left(\mathrm{C}_{\mathrm{g}}+2 \mathrm{C}_{\mathrm{d}}\right) \\
& \boxtimes 5 \mathrm{R}_{\mathrm{eq}} \mathrm{C}_{\mathrm{eq}} \\
& =5 \tau
\end{aligned}
$$

where $\tau=R_{e q} C_{e q}$ and $C_{e q}=C_{g}+2 C_{d}$

- NMOS inverter-pair is faster than CMOS one.
(5 $\tau)$
(7τ)

But, NMOS inverter-pair consumes much more static power than CMOS one.

Inverter-Pair Delay (Cont.)

- Driving same size inverter

L\&W are minimum size
Inverter-pair Delay $=7 \mathrm{Re}_{e} C_{e q}=7 \tau$
where $\tau=\operatorname{Re}_{\mathrm{q}} C_{e q}$

Inverter-pair Delay $=7 n^{2} \mathrm{Re} q C_{a q}$

*Recall that $\quad \omega_{u}=\frac{g_{m}}{C_{g}}=\frac{\mu}{L^{2}}\left(V_{g s}-V_{t}\right)$

Driving Large Capacitive Loads

- CMOS

(i) If $L_{p} \& L_{n}$ are minimum channel length, $\mathrm{t}_{\text {inv-pair }}=7 \mathrm{a} \tau$
(ii) If $L_{p} \& L_{n}$ are not minimum channel length, additional calculation is required to obtain $\mathrm{t}_{\text {inv-pair }}$

- time of the first stage (minimum L)
(i) For $\Delta \mathrm{V}_{\text {in }}$: (a) $3.5 \mathrm{a} \tau\left(\mathrm{W}_{\mathrm{p}}=2.5 \mathrm{~W}_{\mathrm{n}}\right)$, (b) $2 \mathrm{a} \tau\left(\mathrm{W}_{\mathrm{p}}=\mathrm{W}_{\mathrm{n}}\right)$
(ii) For $\nabla V_{\text {in }}$: (a) $3.5 \mathrm{a} \tau\left(\mathrm{W}_{\mathrm{p}}=2.5 \mathrm{~W}_{\mathrm{n}}\right)$, (b) $2 \mathrm{a} \tau\left(\mathrm{W}_{\mathrm{p}}=\mathrm{W}_{\mathrm{n}}\right)$
- NMOS
$\mathrm{t}_{\text {inv-pair }}=5 \mathrm{a} \tau$
Fall/Rise time of the first stage $=\left\{\begin{aligned} a \tau & \text { for } \Delta V_{\text {in }} \\ 4 a \tau & \text { for } \nabla V_{\text {in }}\end{aligned}\right.$

Driving Large Capacitive Loads (Cont.)

- Stage ratio
— Let $y=\frac{C_{L}}{{ }^{{ }^{\circ} C_{g}}}=a^{N}$
where ${ }^{{ }^{\circ} \mathrm{C}_{\mathrm{g}}}$ is the gate capacitance of the first
stage inverter
$\Rightarrow \ln (\mathrm{y})=\mathrm{N} \cdot \ln (\mathrm{a})$
$\Rightarrow \mathrm{N}=\frac{\ln (\mathrm{y})}{\ln (\mathrm{a})}$
- For that N is even, total delay

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{d}}=\frac{\mathrm{N}}{2} 7 \mathrm{a} \tau=3.5 \mathrm{Na} \tau \quad(\mathrm{CMOS}) \\
& \text { (or) }=\frac{\mathrm{N}}{2} 5 \mathrm{a} \tau=2.5 \mathrm{Na} \tau \text { (NMOS) }
\end{aligned}
$$

- For both CMOS and NMOS

$$
\text { Delay } \alpha \mathrm{Na} \tau=\frac{\ln (\mathrm{y})}{\ln (\mathrm{a})} \tau
$$

- minimum t_{d}

$$
\frac{\mathrm{d}}{\mathrm{da}}\left(\frac{\ln (\mathrm{y})}{\ln (\mathrm{a})} \mathrm{a} \tau\right)=0
$$

$\Rightarrow \mathrm{a}=\mathrm{e}=2.71828$ to have minimum value of $\mathrm{Na} \tau$

- number of stages for obtaining minimum t_{d}

Assuming $\mathrm{a}=\mathrm{e}$
$\mathrm{N}=\ln (\mathrm{y})$

Driving Large Capacitive Loads (Cont.)

- Overall delay t_{d} for $\omega_{p}=\omega_{n}$
- N is even

$$
\begin{aligned}
t_{d} & =3.5 N e \tau---C M O S \\
t_{d} & =2.5 N e \tau---N M O S
\end{aligned}
$$

- N is odd
(i) For $\Delta \operatorname{Vin}(\underset{)}{ })$

$$
\begin{aligned}
& t_{d}=[3.5(N-1)+2] e \tau---C M O S \\
& t_{d}=[2.5(N-1)+1] e \tau--N M O S
\end{aligned}
$$

(ii) For $\Delta \operatorname{Vin}$ (飞)

$$
\begin{aligned}
& t_{d}=[3.5(N-1)+5] e \tau---C M O S \\
& t_{d}=[2.5(N-1)+4] e \tau---N M O S
\end{aligned}
$$

- Overall delay t_{d} for $\omega_{\mathrm{p}}=2.5 \omega_{\mathrm{n}}$ can be similarly derived.
- Stage ratio V.S. overall delay

- More detailed analysis that accounts for the contribution of the intrinsic output capacitances of inverters
$-a=e^{\frac{k+a}{a}}$ where $k=\frac{C_{\text {drain }}}{C_{\text {gate }}}$
- a varies from 2.3 to 5 depending on the process
- Example : $k=0.215 \Rightarrow a=2.93$
- In practice, stage ratios form 2 to 10 are quite common in practical circuits depending on speed, area, and power constraints.

Gate Delays

- NAND gate explame

$$
\begin{aligned}
& -\beta_{\text {neff }}=\frac{1}{\frac{1}{\beta_{n}}+\frac{1}{\beta_{n 2}}+\frac{1}{\beta_{n 3}}} \\
& \beta_{\text {neff }}=\frac{\beta_{\mathrm{n}}}{3} \quad \text { (if } \beta_{\mathrm{n} 1}=\beta_{\mathrm{n} 2}=\beta_{\mathrm{n} 3}=\beta_{\mathrm{n}} \text {) } \\
& -\beta_{\mathrm{peff}}=\beta_{\mathrm{p}} \sim 3 \beta_{\mathrm{p}} \quad\left(\text { if } \quad \beta_{\mathrm{p} 1}=\beta_{\mathrm{p} 2}=\beta_{\mathrm{p} 3}=\beta_{\mathrm{p}}\right)
\end{aligned}
$$

- Approximate fall time and rise time

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{f}(\mathrm{NAND})} \approx 3 \mathrm{t}_{\mathrm{f} \text { (inveter) }} \\
& \mathrm{t}_{\mathrm{f}(\mathrm{NAND})} \approx \frac{\mathrm{t}_{\mathrm{f}(\text { inveter })}}{3} \sim \mathrm{t}_{\mathrm{f} \text { (inveter) }}
\end{aligned}
$$

$\left(\begin{array}{l}3 \text { PMOS transisters } \\ \text { are turned on } \\ \text { simultaneously }\end{array}\right)\binom{$ only one PMOS transister }{ is turned on }

Switch-Level RC Models

- Example: a 4-input NAND gate with parasitic capacitances

- Simple RC delay model
- fall time
$\begin{aligned} & \mathrm{t}_{\mathrm{df}}\left.=\underset{ }{=} \mathrm{R}_{\text {pulldown }} \mathrm{X} \quad \mathrm{R}_{\mathrm{N} 1}+\mathrm{R}_{\mathrm{N} 2}+\mathrm{R}_{\mathrm{N} 3}+\mathrm{R}_{\mathrm{N} 4}\right) \quad \mathrm{C} \text { pulldown-path } \\ &\left.\text { (C } \mathrm{C}_{\text {out }}+\mathrm{C}_{\mathrm{ab}}+\mathrm{C}_{\mathrm{bc}}+\mathrm{C}_{\mathrm{cd}}\right)\end{aligned}$
where R_{N} is the equiualent resistance of NMOS
rise time

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{dr}}=\mathrm{R}_{\mathrm{p}} \mathrm{C}_{\text {out }} / 4 \sim \mathrm{R}_{\mathrm{p}} \mathrm{C}_{\text {out }} \\
& \text { (4 transis are } \quad \text { (only one transistor } \\
& \text { turned on } \\
& \text { simultaneously) } \\
& \text { is turned on) }
\end{aligned}
$$

where R_{p} is the equiualent resistance of PMOS

- Penfield Rubenstein Model

$-\mathrm{t}_{\mathrm{d}}=\Sigma \mathrm{R}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}$

where R_{i} is the summed resistance from point i
to power or ground and C_{i} is the capacitance at point i

- 4 input NAND gate example

$$
\begin{aligned}
\mathrm{t}_{\mathrm{df}}= & \mathrm{R}_{\mathrm{N} 1} \mathrm{C}_{\mathrm{cd}}+\left(\mathrm{R}_{\mathrm{N} 1}+\mathrm{R}_{\mathrm{N} 2}\right) \mathrm{C}_{\mathrm{bc}}+\left(\mathrm{R}_{\mathrm{N} 1}+\mathrm{R}_{\mathrm{N} 2}+\mathrm{R}_{\mathrm{N} 3}\right) \mathrm{C}_{\mathrm{ab}} \\
& +\left(\mathrm{R}_{\mathrm{N} 1}+\mathrm{R}_{\mathrm{N} 2}+\mathrm{R}_{\mathrm{N} 3}+\mathrm{R}_{\mathrm{N} 4}\right) \mathrm{C}_{\text {out }}
\end{aligned}
$$

Body Effect

- NMOS(PMOS) transistors will switch slowly if their $\mathrm{V}_{\mathrm{SB}}>0\left(\mathrm{~V}_{\mathrm{SB}}<0\right)$
- 4-input NAND gate example
-ciucuit diagram

-The upper circuit is faster than the lower one because the V_{SB} of the transistors are initially discharged to zero
- Design strategies

1. Place the transistors with the latest arriving signals nearest the output of a gate

- The early signals discharge internal nodes and the late arriving signals have to switch transistors with minimum body effect

2. Minimize the capacitance of internal nodes

Power Dissipation

- Static dissipation
- Dynamic dissipation due to
a. switching transient current
b. charging and discharging of load capacitances

Static Dissipation

- Due to
a. leakage current
b. other current drawn continuously from power supply e.g. NMOS circuits
(For CMOS inverters/gates, the current in b is zero)
- Model describing parasitic diodes present in a CMOS inverter

- Junction leakages current

$$
\mathrm{i}=\mathrm{i}_{\mathrm{s}}\left(\mathrm{e}^{\mathrm{VV} V_{\mathrm{T}}}-1\right) ; \mathrm{V}_{\mathrm{T}}=\frac{\mathrm{KT}}{\mathrm{q}}
$$

where i_{s} is reverse saturation current,
V_{T} is thermal voltage.

- Total static power dissipation
$P_{s}=\sum^{n}$ leakage current X supply voltage
where $n=$ number of devices

Dynamic Dissipation

- Includes
a. switching transient current (i.e. short - circuit current)

During transition from either " 0 " to " 1 ", alternatively from " 1 " to " 0 ", both n-and ptransistors are on for a short period of time. This results in a short current pulse from V_{DD} to V_{ss}.
b. Current is also required to charge and discharge the output capacitive load.
(b. is usually the dominant term)

- SPICE circuits and results showing dynamic shortcircuit current and capacitive current for a CMOS inverter for varying load capacitances

Power Dissipation due to Charging and

Discharging of Load Capacitance

- For step-input (e.g. CMOS inverter)
- Energy flow during t_{1}, i.e. Vo \uparrow
$\operatorname{Vo}(\mathrm{t}=0)=0$
$\operatorname{Vo}(\mathrm{t})=\mathrm{V}_{\mathrm{DD}}\left(1-\mathrm{e}^{\left.-\mathrm{t} / \mathrm{RC}_{\mathrm{L}}\right)}\right.$
Total energy supplied by $V_{D D}$

$$
\begin{align*}
& =\int_{0}^{\mathrm{t}_{1}} \mathrm{~V}_{\mathrm{DD}} \cdot \mathrm{i}(\mathrm{t}) \mathrm{dt}=\mathrm{V}_{\mathrm{DD}} \int_{0}^{\mathrm{t}_{1}} \frac{\mathrm{Vo}(\mathrm{t})}{\mathrm{R}} \mathrm{dt} \\
& =\frac{\mathrm{V}_{\mathrm{DD}}}{\mathrm{R}} \int_{0}^{\mathrm{t}_{1}} \mathrm{~V}_{\mathrm{DD}}\left(1-\mathrm{e}^{\left.-\mathrm{t} / \mathrm{RC}_{\mathrm{L}}\right) \mathrm{dt}}\right. \\
& =\mathrm{C}_{\mathrm{L}} \mathrm{~V}_{\mathrm{DD}}^{2} \\
& \text { Energy dissipated in } \mathrm{R} \\
& =\int_{0}^{\mathrm{t}_{1}} \frac{\left[\mathrm{~V}_{\mathrm{DD}}-\mathrm{Vo}(\mathrm{t})\right]^{2}}{\mathrm{R}} \mathrm{dt} \\
& =\frac{1}{2} \mathrm{C}_{\mathrm{L}} \mathrm{~V}_{\mathrm{DD}}^{2} \tag{A}\\
& \mathrm{t} \text { (} \mathrm{t}) \downarrow
\end{align*}
$$

Energy stored in C_{L}
$=C_{L} V_{D D}^{2}-\frac{1}{2} C V_{D D}^{2}=\frac{1}{2} C_{L} V_{D D}^{2}$

- Energy flow during t_{2}, i.e. Vo \downarrow

Energy stored in C_{L} is exhaustively dissipated

- During a period $t_{p},(B)=(C)$

Energy dissipated $=(A)+(B)=\frac{1}{2} C_{L} V_{D D}^{2}$
\Rightarrow Power dissipation $P_{d}=C_{L} V_{D D}^{2} f_{p}$ where $f_{p}=\frac{1}{t_{p}}$

- Ramp $V_{D D}$ and GND can be used in low power systems to reduce power dissipated in transistors(i.e. the above term (A) is reduced)

Short-Circuit-Dissipation

- For an unloaded inverter
- input switching waveform and model for short-circuit current

-short-circuit dissipation
$P_{\text {sc }}=I_{\text {mean }} \cdot V_{D D} t_{t_{p}}$
$I_{\text {mean }}=2\left[\frac{1}{t_{p}} \int_{t_{1}}^{t_{2}} I(t) d t+\int_{t_{2}} I(t) d t\right]$
$=\frac{1}{t_{p}} \int_{t_{1}}^{t_{2}} \frac{\beta}{2}\left[V_{\text {in }}(\mathrm{t})-\mathrm{V}_{\mathrm{th}}\right]^{2} \mathrm{dt}$
where $V_{t n}=-V_{t p}, \beta_{\mathrm{n}}=\beta_{\mathrm{p}}=\beta$ are assumed
If $V_{\text {in }}(t)=\frac{V_{D D}}{t_{r}} t, t_{1}=\frac{V_{\text {th }}}{V_{D D}} t_{r}$, and $t_{2}=\frac{t_{r}}{2}$,
then $\mathrm{P}_{\mathrm{sc}}=\frac{\beta}{12}\left(\mathrm{~V}_{\mathrm{DD}}-2 \mathrm{~V}_{\mathrm{th}}\right)^{3} \cdot \mathrm{t}_{\mathrm{rf}} \cdot \mathrm{f}_{\mathrm{p}}$
where $t_{r}=t_{f}=t_{r f}$ and $f_{p}=1 / t_{p}$ are assumed.
- short-circuit dissipation is dependent on the input waveform rise and fall times
- Keep all falling and rising edges fast if power dissipation is a concern
- As load capacitance is incresed, Psc remains almost the same. However P_{d} is incresed.

Total Power Dissination

- $\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{d}}+\mathrm{P}_{\mathrm{sc}}$
- where $P_{d}=$ activity-percentage $X\left(C_{\text {total }} V_{D D}{ }^{2 f} f_{p}\right)$
- $\mathrm{P}_{\text {sc }}$ is also multiplied by an activity-percentage

Power Economy

- Power dissipation constraint must be met in a design because of low-power and thermal-dissipation concerns.
- Methods to minimize power dissipation.

1. use minimum-sized devices to reduce.
a. diffusion area and hence leakage current.
b. load capacitance to reduce dynamic dissipation.
2. Reduce supply voltage, e.g. $1.5 \mathrm{~V} \sim 3 \mathrm{~V}$.
3. Manual layout techniques are used to minimize routing capacitance.
4. Operate circuitry at the lowest possible speed
5. Many other clever methods of manipulating architecture, circuit, and layout to achieve low-power and high-speed goals.

Size Routing Conductors

- Metal power-carrying conductors have to be sized for three reasons :

1. Metal migration

- current density is the dominant factor
- for $1 \mu \mathrm{~m}$-thick Aluminum, maximum allowable current density
$J_{A l} \approx 1 \sim 2 \mathrm{~mA} / \mu \mathrm{m}$
- V_{DD} and V_{SS} lines

2. Power supply levels

- IR drop during charging transients (Poor V_{DD} or V_{SS} levels can lead to poor logic levels which reduce noise margin and cause incorrect operation)

3. RC delay
has been discussed in sec. 4.3.5

Power and Ground Bounce

- Voltage spikes occur on the power and ground lines during current switching :

1. voltage drop due to line inductance
$\Delta V=L \frac{\mathrm{~d} i}{\mathrm{~d} t}$
2. voltage drop due to line resistance $\Delta V=\Delta i \cdot R$

- Occur in I/O pads while driving an outside load
- Separate power and ground buses are routed to the I/O buffers so that the ground bounce does not flow through internal circuitry.

Contact Replication

- Big contact is not suggested

If a large contact opening were permitted, the central areas of these openings would be etched away before the oxide was completely removed for the smaller contact openings. As the etching continued in the small openings, any pinholes in the large open area could be further attacked by the etchant. Since the underlying poly layer thicknesses and diffusion depths are comparable in thickness to the layer that must be removed during contact openings, and since underlying thin oxides are much thinner, these pinholes could cause device failure. Although the probability of failure due to a single larger contact may be very low, the probability of a single failure that would render a circuit defective if a large number of these large openings were permitted may be unacceptably large. Even if the pinholes did not cause shorting, the reliability of such devices deteriorates with increased risks of premature device failures after the part is in use. For these reasons, contact openings on the gates of transistors (no contact to poly inside active) are usually not permitted either.

Contact openings to POLY II on top of POLY I are permitted. Although this type of contact is also plagued by the pinhole problem, the POLY II layer is generally used in analog applications as an upper plate of a capacitor. The total number of capacitors in these circuits is generally quite small compared to the number of transistors in a large digital circuit, thus minimizing (in the probabilistic sense) the failures due to the pinhole problem.

- Multiple-contact

Often, a single run of a conductor can not be made to supply all circuits or modules in a design. In these cases a layer change may be necessary. Because this involves the use of interlayer contacts or vias, the resistance and current-carrying capacity of these structures must be taken into account for the effects mentioned in this section.

The current density in a contact (window, cut) periphery must be kept below about $0.1 \mathrm{~mA} / \mu \mathrm{m}$. We find that, due to current crowding around the perimeter of a window, a chain of small windows, suitably spaced, generally provides just as much current-carrying capacity as a single long, narrow contact. The direction of the current flow after passing through a contact can also influence the current-carrying capacity. If the current flow turns at right the flow is in the same direction, fewer contacts may be used.

Charge Sharing

- Bus(for data transfer)

- C_{b} is bus capacitance
- C_{s} is node capacitance (e.g. $\mathrm{C}_{\mathrm{d}}, \mathrm{C}_{\mathrm{g}}, \ldots$, ,etc.)
- Total charge $\mathrm{Q}_{\mathrm{T}}=\mathrm{C}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}+\mathrm{C}_{\mathrm{s}} \mathrm{V}_{\mathrm{s}}$
- When the switch is closed, the resultant voltage V_{R} on C_{s} is $\left(\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{DD}}\right.$, is assumed $)$
$V_{R}=\frac{Q_{T}}{C_{b}+C_{s}}==>\mathrm{C}_{\mathrm{b}} \gg \mathrm{C}_{\mathrm{s}}$ is required to ensure
- Dynamic logic circuit
(1)When $\mathrm{C}_{\mathrm{k}}=0$ (precharge)
$-\mathrm{M}_{1}$ is on, M_{4} is off, $\mathrm{V}\left(\mathrm{C}_{0}\right)=\mathrm{V}_{\mathrm{DD}}$
$\mathrm{M}_{2} \quad$ off and $\mathrm{V}\left(\mathrm{C}_{\mathrm{s}}\right)=0$ are assumed.
(2) When $\mathrm{C}_{\mathrm{k}}=1$ (evaluate)

If $\mathrm{A}=1$ and $\mathrm{B}=0$,
then $V\left(C_{0}\right)=\frac{V_{D D}}{C_{0}+C_{s}}<V_{D D}$ ($\mathrm{C}_{\mathrm{o}} \gg \mathrm{C}_{\mathrm{s}}$ is required.
Otherwise, $\mathrm{V}\left(\mathrm{C}_{\mathrm{o}}\right)<\mathrm{V}_{\mathrm{IH}}$ may happen)

Design Margining

- Three sources of variation
(two environmental and one manufacturing)

1. Temperature
-ranges for normal operation
commercial: $0^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$
military: $-55^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$
-transistors:
T $\uparrow=>$ IDS \downarrow for a given set of voltage biases

- capacitors and resistors:
thermal coefficients
- variations with temperature are not very important for digital circuits but are very important for analog circuits

2. Supply voltage

- 10% variation is the general spec. for commercial product e.g. $4.5 \mathrm{~V} \sim 5.5 \mathrm{~V}$ for a 5 V system $3.0 \mathrm{~V} \sim 3.6 \mathrm{~V}$ for a 3.3 V system

3. Process variation

- The fabrication process is a long sequence of chemical reactions that result in device characteristics that follow a normal or Gaussian distribution
- distribution of process parameters

- worst-case considerations

a. transistors:

* nominal
* fast
* slow
b. CMOS circuits
* fast-n fast-p
* fast-n slow-p
* slow-n slow-p
* slow -n fast-p

- Design corners

- one must aim to design a circuit that will reliably operate over all extremes of these three variables

	CMOS Digital System Checks(Commercial)		
PROCESS	TEMP	VOLTAGE	TESTS
Fast-n/fast-p	$0{ }^{\circ} \mathrm{C}$	$5.5 \mathrm{~V}(3.6 \mathrm{~V})$	Power dissipation(DC),clock races
Slow-n/slow-p	$125{ }^{\circ} \mathrm{C}$	$4.5 \mathrm{~V}(3.0 \mathrm{~V})$	Circuit speed,external setup and hold times
Slow-n/fast-p	$0{ }^{\circ} \mathrm{C}$	$5.5 \mathrm{~V}(3.6 \mathrm{~V})$	Pseudo-nMOS noise margin, level shifters,memory write/ read,ratioed circuits Fast-n/slow-p
$0{ }^{\circ} \mathrm{C}$	$5.5 \mathrm{~V}(3.6 \mathrm{~V})$	Memories,ratioed circuits,level shifters	

\rightarrow Use design-centering technique if possible

- Packaging issues

- Package selection can be very important because packages vary widely in cost and thermal impedance
- Usually the more expensive a package for a given number of pins, the better the thermal impeadance.
(e.g. Ceramic is better than plastic)
_ Heat sink, fan, or large cooling systems may be required Packages also have a wide variation in lead inductance, with ceramic pin-grid arrays having the lowest values and cheap plastic packages the highest

Yield

- Defined as $\mathrm{Y}=\frac{\text { No. of good chips on wafer }}{\text { Ton }} \times 100 \%$ Total number of chips
- Seeds's model
- This model is used for large chips and for yields less than about 30%
$Y=e^{-\sqrt{A D}}$
A= chip area
$\mathrm{D}=$ defect density
- Murphy's model
- This model is used for small chips and for yields greater than 30%

$$
\mathrm{Y}=\left[\frac{1-\mathrm{e}^{-\mathrm{AD}}}{\mathrm{AD}}\right]
$$

- A more recent generalized model

$\mathrm{i}=$ the i -th type of defect
$\mathrm{j}=$ the j -th module
$\mathrm{P}_{\mathrm{ij}}=$ the probability that an i defect will cause a fault in the j-th area
$\mathrm{C}_{\mathrm{i}}=$ the constant relating to the density of a i -th type of defect

Realialility

- long lifttime of a part should be guaranteed
- potential reliability problems

- Hot electron effects
 - Electromigration

- Oxide failure
- Bipolar transistor degradation
- Package / chip power dissipation(die temperature)
- ESD protection

Scaling of MOS transistor dimensions

Scaling factor $\alpha \Longrightarrow$（components／unit area）will increase by a factor of α^{2}
$\lambda-$ rule ：λ 變大 $/ 小 \Longrightarrow$ 所有rule都變大／小 \Longrightarrow layout rule變大／小

Scaling Model ：constant field scaling（fist order）
Scaling factor so applied to ：
（1）All dimensions，including those vertical to the surface
（1）device voltages
（1）the concentration densities i．e．（1） $\mathrm{L}, \mathrm{W}, \mathrm{t}_{\mathrm{ox}}, \mathrm{X}_{\mathrm{j}} \ldots .1 / \alpha$
（1） $\mathrm{V}_{\mathrm{DD}} \Longrightarrow \mathrm{V}_{\mathrm{DD}} / \alpha$
（1） $\mathrm{N}_{\mathrm{A}} \Longrightarrow \alpha \mathrm{N}_{\mathrm{A}}$

Influence of Transistor Scaling

- First-order influence

- Yield

Device dimension \downarrow => chip area \downarrow => yield

Limitations to Scaling

- Power supply :
- Noise margin is reduced
- Relationship among V, L , and doping concentration

- Metal Migration :
- Current density limit on metal (conductor) and others
- Latchup
- spacing between NMOS and PMOS can not be arbitrarily scaled down without the danger of including latchup conditions

Scaling of Wires and Interconnections

- Influence of scaling on interconnect media

PARAMETERS SCALING FACTOR

Line resistance; r	α
Line response; rc	1
Normalized line response	α

Line voltage drop; $\mathrm{V}_{\mathrm{d}}{ }^{\text {, }}$ 1

Normalized line voltage drop $\mathrm{V}_{\mathrm{d}}{ }^{\prime} / \mathrm{V}_{\mathrm{DD}}{ }^{\prime} \quad \alpha$
Current density; J α
Normalized contact voltage drop; $\mathrm{V}_{\mathrm{c}} / \mathrm{V}$

- $\mathrm{R}^{\prime}=\frac{\rho}{\mathrm{t} / \alpha}\left[\frac{\mathrm{L} / \alpha}{\mathrm{W} / \alpha}\right]=\mathrm{R}$
- $\mathrm{R}^{\prime} \mathrm{C}^{\prime}=(\alpha \mathrm{R})\left(\frac{\mathrm{C}}{\alpha}\right)=\mathrm{k}{ }^{\prime} \mathrm{C}$
- $\frac{\mathrm{R}^{\prime} \mathrm{C}^{\prime}}{\tau}{ }^{\prime}=\frac{\mathrm{R}^{\prime} \mathrm{C}^{\prime}}{\tau / \alpha}=\alpha \tau$
(Normailized line response)
- $\mathrm{Vd}_{\mathrm{d}}{ }^{\prime}=\frac{\mathrm{I}}{\alpha} \alpha \mathrm{R}=\mathrm{IR}$
- Normailized line voltage drop

$$
\frac{\mathrm{Vd}_{\mathrm{d}}^{\prime}}{\mathrm{VDD}_{\mathrm{DD}}},=\frac{\mathrm{IR}}{\mathrm{~V}_{\mathrm{DD}} / \alpha}=\frac{\mathrm{V}_{\mathrm{d}}}{\mathrm{~V}_{\mathrm{DD}} / \alpha}=\alpha
$$

