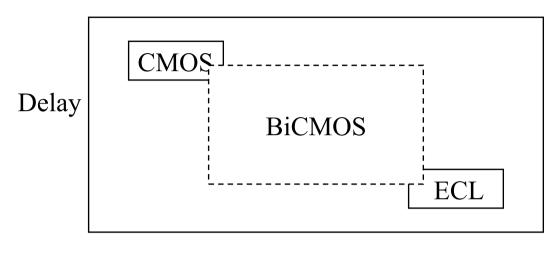
BiCMOS Circuit Design

- 1. Introduction to BiCMOS
- 2. Process, Device, and Modeling
- 3. BiCMOS Digital Circuit Design
- 4. BiCMOS Analog Circuit Design
- 5. BiCMOS Subsystems and Practical Considerations

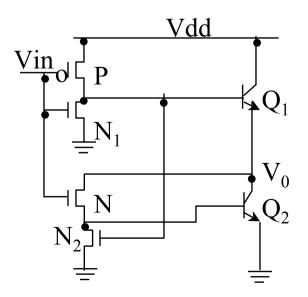
Introduction to BiCMOS


- BiCMOS Characteristics
- Advantages of BiCMOS
- Drawbacks of BiCMOS
- BiCMOS Evolution
- BiCMOS Technology
- BiCMOS Applications
- Summary

BiCMOS Characteristics

- Bipolar and MOS transistors are fabricated in a chip
- Advantages of bipolar and CMOS circuits can be retained in BiCMOS chips
- BiCMOS technology enables high performance integrated circuits ICs but increases process complexity

BiCMOS Characteristics (cont)


• Delay and power

Power

• First BiCMOS circuit (An inverter)

-proposed by Hung-Chung Lin in 1969

BJT & CMOS Advantages

- CMOS over BJT
 - Power dissipation
 - Noisee margin
 - Packing density
 - Ability to integrate large and complex circuits and functions with high yield
 - Good switch
- BJT over CMOS
 - Switching speed
 - Current drive per unit area
 - Noise performance no 1/f noise
 - Analog capability
 - [–] I/O speed
 - High transconductance

BiCMOS Circuit Advantages

- Improved speed over CMOS
- Lower power dissipation over BJT (Simplifies packing and board requirements)
- Flexible I/O (ECL, CMOS, or TTL)
- High performance analog
- Latchup immunity
- High impedance input (FET)
- High gain (BJT)
- Low 1/f noise
- >1 GHz toggle frequency

BiCMOS Circuit Advantages (Cont.)

- Low input offset voltage for differential pair
- Zero offset analog switches
- Gain-bandwidth product extended
- Good voltage reference

Drawbacks of BiCMOS

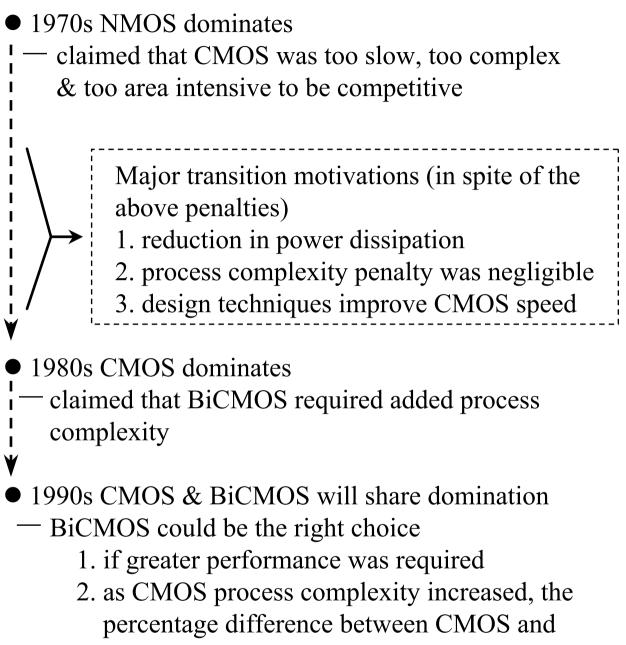
• Add process complexity — higher cost — longer fabrication cycle time **BiCMOS** process **BiCMOS** process Ш П CMOS process Bipolar process ++Buried layer & Epi Well ++9 Gate Oxide & Poly +LDD

• Technology choice: BiCMOS Market choice: not necessarily

BiCMOS Evolution

- > 1st generation (1969 mid 1970s)
 - 1st publication in 1969 (by H.C. Lin)
 - BiCMOS OPAMPs by RCA in the mid 1970s
- > 2nd generation (1970s mid 1980s)
 - Smart power (major product):

high current (>20A)


high voltage (>500V)

- high voltage BiCMOS at Standford
- BiDEFT (combined CMOS, bipolar, and high voltage lateral DMOS transistor)

Applications: display drivers, voltage regulators

- > 3rd generation (mid 1980s present)
 - 5V digital BiCMOS (major)
 - Motivated by:
 - 1. power dissipation constraints of BJT
 - 2. speed limitations of MOSFET
 - 3. repuirements for higher I/O throughput
 - Major players: Hitachi, Motorola, GE, NEC,
 SGS, National, TI
 - Major products: memory, smart power, μ Ps

Evolution of High Performance Digital MOSFET Related Technology

BiCMOS mask steps decreased

BiCMOS Device Technology

- Optimal device parameters are driven by circuit performance
- Three key circuit performance parameters
 - a. speed
 - b. power dissipation
 - c. noise margin
- Circuit parameters depend on device parameters while device parameters depend on process parameters
 - device parameters:
 - e.g. saturation current, capacitance
 - process parameters:
 - e.g. oxide thickness, channel length, bulk doing, basewidth, epitaxial layer profile,emitter width.
- Technology challenges

 optimization of impurity profiles between bipolar and CMOS transistors

BiCMOS Process Technology

• Comparison of process characteristics

<u>Step</u>	<u>CMOS</u>	H.Perf.	BiCMOS low Cost	<u>Analog</u>	<u>Bipolar</u>
Masks	12	15	13	16	13
Etches	11	12	11	12	11
Epi	Optional	Required	Optional	Required	Required
Furnace	16	19	16	19	16
Implant	8	12	9	13	7
Metal	2	2	2	2	2
Total	49	61	51	63	50

* Epitaxy is an expensive and defect added step.

BiCMOS Applications

- Mixed analog/digital systems
 - use bipolar analog for high performance
 - use CMOS digital for high-density and low-power
- High density , high speed RAMs
 - use MOS cells
 - use BiCMOS sense amps. and peripheral circuits
- High performance microprocessor
- Gate array
- Flash A/D converters
 - use bipolar comparators
 - 1. high speed
 - 2. low offset
 - 3. low power
 - use CMOS encoding logic
 - 1. hgh density
 - 2. low power

SUMMARY

- Advantages:
 - BiCMOS technology significantly enhances speed performance while incuring negligible power and area penalty
 - BiCMOS can provide applications with CMOS power and densities at speeds which were previously the exclusive domain of bipolar
 - The concept of a "system on a chip" becomes a reality with BiCMOS
- Disadvantages:
 - Greater process complexity
 - Higher cost
 - 1.25-1.4 times increase in die cost over conventional CMOS
 - Takin into account packaging and testing costs, the total manufacturing costs of supplying a BiCMOS chip ranges from 1.1-1.3 times that of CMOS

SUMMARY (Cont.)

• Facts:

- The extra cost incurred in developing a BiCMOS technology is more than offset by the fact that the enhanced chip performance obtained extends the usefulness of manufacturing equipment and clean rooms by at least one technology generation
- For current BiCMOS technology(e.g. > 0.5 μm), it will extend the conventional |5V|TTL and ECL interfaces, thereby maintain the investment in 5V system
- From the above descriptions, one can see that BiCMOS will have a significant impact on the IC industry