# Process, Device, and Modeling

- Process
  - CMOS
  - BiCMOS

- Device Models
  - Large signal model
  - Small signal model
- Comparison of BJT & MOSFET
  - Transconductance
  - Intrinsic gain
  - Frequency response
  - Matching
  - Other parameters

## **BiCMOS Process**

- CMOS based BiCMOS (driven from a CMOS processing base)
- Digital BiCMOS circuits tend to be CMOS-intensive because of power dissipation limitations(e.g. RAMs, uPs, gate arrays,..., etc.)
   => hightest possible CMOS performance
   Analog BiCMOS circuits are most often
- Analog BiCMOS circuits are most often combined with large digital circuit
   => results in CMOS-oriented
- Extra steps required for BJT fabrication (e.g. isolation structure) have been introduced with only minimal changes to the actual CMOS transistor fabrication sequence
- Process commonality between the bipolar and CMOS flows has been adopted whenever possible

## **Device Patterning**



Photoresists NEG - first historically POS - better for dimensions < 2.5um NEG - insoluble where exposed POS - soluble where exposed

# CMOS P-well Process Flow



# CMOS P-well Process Flow (Continued)









#### Digital BiCMOS Process Flow

- 1. P-substrate
- 2. N<sup>+</sup> buried & oxide over N<sup>+</sup> buried
- 3. Self-aligned buried P<sup>+</sup>
- 4. Epitaxial layer with intrinsic doping



- 5. N-well formation & oxide over N-well
- 6. Self-aligned P-well
- 7. Active region and channel stop formation



#### Digital BiCMOS Process Flow(Cont.)

#### 8. $N^+$ collector to deep buried $N^+$ layer



9. P-base and P-type resistor



#### Digital BiCMOS Process Flow(Cont.)

10. Poly emitter & N<sup>+</sup> implant into poly emitter to form diffused emitter junction



11. Gate & LDD formation



#### Digital BiCMOS Process Flow(Cont.)

#### 12. N<sup>+</sup> & P<sup>+</sup> S/D implant



- 13. Interconnection: silicide, contact, metal
- 14. Passivation



#### Analog BiCMOS Process Components

- BJT components
  - isolated structure with
    - a. low collector resistance
      - required for high current operation
    - b. high Early voltage
      - high output resistance
  - adding PNP will result in high cost and increase process complexity
- CMOS components
  - minimum channel length of 2-3 μm is preferred for required high output resistance
- Passive components
  - capacitors poly-poly capacitors show low TC & VC, and is used to reduce parasitic effects
  - resistors
     poly resistor & thin film resistor are used to
     reduce TC & VC
- Component matching BJT > CMOS
- Component noise BJT < PMOS < NMOS

# **CMOS I-V Characteristics**

(Example: NMOS)

• Three regions

- 1. Cutoff region (digital circuit) Subthreshold region (analog circuit)  $V_{GS} < V_{TH}$
- 2. Nonsaturation region:  $V_{GS} > V_{TH}$ ,  $V_{GD} > V_{TH}$ (also called linear or triode region)
- 3.Saturation region:  $V_{GS} > V_{TH}$  ,  $V_{GD} < V_{TH}$

Current equations for the above three regions 1.  $\cong 0$  (very small) 2.  $\mu_{n} \text{Cox} \frac{W}{L} (V_{\text{GS}} - V_{\text{TH}}) V_{\text{DS}} - \frac{V_{\text{DS}}}{2}$  $3. \frac{\mu_{n} Cox}{2} \frac{W}{T} (V_{GS} - V_{TH})^{2} (1 + \lambda V_{DS})$ where  $V_{TH} = V_{TO} + \gamma (\sqrt{2 \phi_F + V_{SB}} - \sqrt{2 \phi_F})$  $\gamma = \sqrt{\frac{2q\epsilon N_A}{Cox}}$ ,  $\lambda = \frac{\frac{dX_d}{dV_{DS}}}{L_{eff}}$ / LINEAR SATURATION  $I_D$ Vds

Tai-Haur Kuo, EE, NCKU, 1997

#### **BJT I-V Characteristics**

(Example: NPN)

# Regions: 1. Cutoff region: V<sub>BE</sub> < 0, V<sub>BC</sub> < 0</li> 2. Saturation region: V<sub>BE</sub> > 0, V<sub>BC</sub> < 0</li>

- 3. Forward active region:  $V_{BE} > 0$ ,  $V_{BC} < 0$
- 4. Reverse active region:  $V_{BE} < 0$ ,  $V_{BC} > 0$

• Current equation of the forward active region

$$I_{C} = I_{S} \left[ exp\left(\frac{V_{BE}}{V_{t}}\right) \frac{1}{j} \left(1 + \frac{V_{CE}}{V_{A}}\right) \frac{1}{j} \right]$$
where  $I_{B} = \frac{I_{C}}{\beta_{F}}$ ,  $I_{S} = \frac{qAD_{n}ni^{2}}{Q_{B}}$ 
 $V_{t} = \frac{KT}{q}$ ,  $V_{A} = -W_{B} \left(\frac{dW_{B}}{dV_{CE}}\right)^{-1}$ 

#### **CMOS Small Signal Models**

(NMOS-saturation region)



## BJT Small Signal Model

(NPN-forward active region)

$$g_{m} = \frac{I_{C}}{V_{t}}$$

$$r_{o} = \frac{I_{C}}{V_{A}}$$

$$r_{\mu} = \left(\frac{d I_{B}}{d V_{CB}}\right)^{-1} = K\beta_{o} r_{o} \text{ (typically, 1 < K < 10)}$$

$$C_{b} = \frac{d Q_{B}}{d V_{BE}} = \oint_{F}g_{m}; \text{ where } \oint_{F} = \frac{W_{B}^{2}}{D_{n}}$$

 $C_{je}$ : base-emitter junction capacitance  $C_{\mu}$ : collector-base junction capacitance  $C_{cs}$ : collector-substrate junction capacitance  $r_{b}$ : ohmic resistance from base terminal to internal base  $r_{c}$ ,  $r_{ex}$ : collector and emitter ohmic resistances



#### Comparison of BJT & MOSFET Devices

(General case)

- Transconductance BJT > MOSFET
- Intrinsic gain
   BJT > MOSFET
- Frequency response BJT > MOSFET
- Input offset voltage for differential amplifier MOSFET > BJT
- Noise MMOS > PMOS >BJT
- Input impedence
   MOSFET > BJT
- Back-bias effect (i.e. body effect) only MOSFET
- Switch MOSFET is a voltage switch.
   BJT is a current switch.

## Transconductance



• BJT  

$$I_{C} = I_{s} exp\left(\frac{V_{BE}}{V_{t}}\right); \quad V_{t} = \frac{kT}{q}$$
  
 $g_{m} = \frac{dI_{C}}{dV_{BE}} = \frac{I_{C}}{V_{t}}$   
1. Process independent  
2. Size independent  
3. Varies as  $I_{C}$ 

Tai-Haur Kuo, EE, NCKU, 1997

## Comparision of Transconductance vs. Current between MOSFEETs and BJTs

• 
$$V_t = \frac{KT}{q} = 25.9 \text{ mv}$$
  
•  $\frac{\mu C_{ox}}{2} = 10 \ \mu \text{ A} / \text{V}^2$ 



#### Intrinsic Gain



#### Frequency Response



$$\omega_T = \frac{g_m}{C_{gs}} \approx \frac{\sqrt{2\mu C_{ox} \frac{W}{L} I_{DS}}}{WLC_{ox}} = \frac{\mu}{L^2} (V_{gs} - V_{th})$$
  
$$\omega_T \propto L^{-2}, \omega_T \propto \sqrt{I_{DS}} \propto (V_{gs} - V_{th})$$

 $\stackrel{\text{le In terms of } I_{DS}, \text{ high } \omega_{T} \text{ is incompatible with high gain}}_{(g_m I_0 \propto \sqrt{L} \quad but \quad g_m I_0 \propto \frac{1}{\sqrt{I_{DS}}})}$ 

• Bipolar

$$\omega_T = \frac{g_m}{c_\pi + c_\mu} \propto I_c$$
 where  $g_m = \frac{I_c}{V_T}$ 

 $\vdash$  For BJT, β is decreased at high current



## Input Offset Voltage of Differential Amp.

