1. For the system in Fig. P1(a), the sampling frequency f_{s} of the ideal ADC is 150 kHz and the spectrum of $\mathrm{X}_{\mathrm{a}}(\mathrm{t})$ is shown in Fig. P1(b).
(a) Please design the cut off frequency ω_{c} of the ideal low pass filter shown in Fig. P1(c) to avoid the aliasing effect when the down-sampling factor is 3 . (5%)
(b) Please plot the spectra of, $x_{d}[n], x_{\text {LPF }}[n]$ and $x_{\text {out }}[n]$, respectively (You need to mark the magnitude and corresponding frequency on each spectrum). (15\%)

Fig. P1(a)
2. Briefly describe the following questions.
(a) Draw a latched comparator circuit. Explain why its input hysteresis, i.e., memory effect, exists. (5\%)
(b) Please draw the circuit diagram of a 3-bit flash A/D converter. Explain what problems should be noticed in designing this type of ADC (List at least 2 problem). (10\%)
(c) Please draw the circuit diagrams of a 3-bit binary-weighted DAC and a thermometer-code currentsteering DAC. Please evaluate the maximum DNL and gain-error for these two DACs' in (a), respectively. Assume the maximum mismatch error of $1: 1$ current mirror is $\pm 1 \%$. (20\%)
(d) List and briefly explain a S/H circuit design with signal-independent switch errors. Please give 2 methods to minimize signal-dependent switch error, and explain how they work. (10\%)
(e) Please explain the pre-filtering and post-filtering strategies for conventional high-resolution signalprocessing systems utilizing Nyquist-rate ADCs and DACs, respectively. (20\%)
(f) Please explain the pre-filtering strategies for conventional Nyquist-rate A/D converters (5\%) and oversampling A/D converters. Explain the bandwidths chosen for the filters used. (5\%)
(g) Draw the cross section of the parasitic PNP and the circuit diagram of CMOS N-well bandgap voltage reference operating in weak inversion. Derive an equation to express the reference voltage $\mathrm{V}_{\text {ref. }}$. Channel length modulation effect can be ignored. Please explain why a bandgap voltage reference is temperature independent. (10%)
3. What is the SNR of an ideal 12-bit unipolar ADC with $\mathrm{V}_{\text {REF }}=0.8 \mathrm{~V}$ when a sinusoidal input of $0.15 \mathrm{~V} \sim 0.65 \mathrm{~V}$ is applied? (5\%) What size input (V_{pp}) would result in an SNR of 35 dB ? (5\%)
4. A sinusoidal input of $0.8 \mathrm{~V}_{\mathrm{pp}}$ is applied to an ideal N -bit unipolar ADC with $\mathrm{V}_{\text {ref }}=1 \mathrm{~V}$. If the requirement of SNR is at least 70 dB , please calculate the minimum bit number N and find SNR when the amplitude of sinusoidal input is changed to $60 \mathrm{mV} V_{\mathrm{pp}}$.
5. A Multiplying DAC (MDAC) and the waveform of its non-overlapped clock is shown in Fig. P5 (a) and Fig. P5 (b), respectively. In an ideal case, the MDAC output can be expressed as $\mathrm{V}_{\text {out }}=2 \mathrm{~V}_{\text {in }}$. However, in an actual case, the opamp finite DC gain, A , parasitic capacitor of opamp input node, C_{p}, and capacitor mismatch, $\mathrm{C}_{\mathrm{s}} \neq \mathrm{C}_{\mathrm{f}}$, would degrade the accuracy of the MDAC output.
(a) Please express the MDAC output in term of $\mathrm{A}, \mathrm{C}_{\mathrm{s}}, \mathrm{C}_{\mathrm{f}}, \mathrm{C}_{\mathrm{p}}$ and $\mathrm{V}_{\text {in. }} .(10 \%)$
(b) Assuming $\mathrm{C}_{\mathrm{f}}=\mathrm{C}_{\mathrm{s}}=\mathrm{C}$ and $\mathrm{C}_{\mathrm{P}}=1 / 20 \mathrm{C}$, please calculate the minimum opamp DC gain A such that 2 VinVout| is less than 0.001Vin? (5\%)

Fig. P5(a)

Fig. P5(b)
6. Fig. P6 shows a 3-bit R-2R-based DAC. Due to mismatch effect, the resistance of R_{A} and R_{B} are $0.9 R$ and 1.1 R respectively. Assume that the opamp is ideal, $\mathrm{V}_{\mathrm{REF}}=1.8 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{f}}=\mathrm{R}$. (Hint: Compared with ideal R-2R-based DAC)
(a) Find the offset and gain errors in unit of LSB. (6\%)
(b) Find the INL (endpoint) errors in unit of LSB. (12\%)
(c) Find the DNL errors in unit of LSB. (12\%)
(d) Is this DAC monotonic? Why? (5\%)

Fig. P6
7. Consider a 3-bit D / A converter in which $\mathrm{V}_{\text {REF }}=1.2 \mathrm{~V}$ (that is, 000 refers to 0 V and 111 refers to 1.05 V), with the following measured voltage values: $\{0.031: 0.204: 0.312: 0.467: 0.619: 0.814: 0.802$:
1.124\}
(a) Find the offset and gain errors in unit of LSB. (10\%)
(b) Find the INL (endpoint) errors in unit of LSB. (10\%)
(c) Find the DNL errors in unit of LSB. (10\%)
(d) Is the input/output transfer curve of the D/A converter monotonic? Why? (5\%)
8. Fig. P8(a)~(c) shows a 5-bit modified successive approximation A/D converter which operates in different mode.
(a) According to Fig. P8(a)~(c), please describe the operation. (6\%)
(b) According to Fig. P8(a)~(c), please calculate the V_{x} value in terms of $\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {ref }}$ where parasitic capacitance $\left(\mathrm{C}_{\mathrm{p}}\right)$ at node V_{x} can be ignored. (9%)
(c) Assume parasitic capacitance $\left(\mathrm{C}_{\mathrm{p}}\right)$ at node V_{x} can be ignored. Please derive the digital output ($\mathrm{b}_{1} \sim \mathrm{~b}_{5}$) where $\mathrm{V}_{\text {in }}=1.15 \mathrm{~V}$ and $\mathrm{V}_{\text {ref }}=2 \mathrm{~V}$. (5%)
(d) Assume parasitic capacitance $\left(\mathrm{C}_{\mathrm{p}}\right)$ of 3 C exists at node V_{x}. Please calculate the V_{x} value where $\mathrm{b}_{1} \sim \mathrm{~b}_{5}$ is switch to the digital output calculated in (b). (5\%)

9. The deterministic approach for calculation of ADC quantization noise is shown in Fig. P9(a). A ramp input signal $\left(\mathrm{V}_{\text {in }}(\mathrm{t})\right)$ is injected into the ADC and the staircase output signal $\left(\mathrm{V}_{\text {out }}(\mathrm{t})\right)$ is the output of an ideal DAC converting the ADC digital output ($\mathrm{B}_{\text {out }}$. Quantization error $\left(\mathrm{V}_{\mathrm{Q}}(\mathrm{t})\right.$) can be given as $\mathrm{V}_{\text {out }}(\mathrm{t})$ $\mathrm{V}_{\text {in }}(\mathrm{t})$. Both $\mathrm{V}_{\text {in }}(\mathrm{t})$ and $\mathrm{V}_{\text {out }}(\mathrm{t})$ for the ideal 2-bit ADC is shown in Fig. P9(b). (No overloading is assumed.)
(a) Please plot $\mathrm{V}_{\mathrm{Q}}(\mathrm{t})$ for the ideal 2-bit ADC and mark upper bound, lower bound, and timing. (10\%)
(b) Please derive root mean squared quantization error $\mathrm{V}_{\mathrm{Q}}(\mathrm{rms})=\mathrm{V}_{\mathrm{LSB}} / \sqrt{12} \cdot(10 \%)$
(c) Please derive SNR of N -bit ideal ADC under sine input signal with a peak-to-peak amplitude $\mathrm{V}_{\text {ref }}$, where $\operatorname{SNR}(\mathrm{N}-\mathrm{bit})=6.02 * \mathrm{~N}+1.76(\mathrm{~dB}) .(10 \%)$

Fig. P9(a)

Fig. P9(b)
10. For a 4-bit R-2R-ladder DAC converter shown in Fig. P10, what is the output error (in LSBs) when input digital word is $\{\mathrm{b} 1 \mathrm{~b} 2 \mathrm{~b} 3 \mathrm{~b} 4\}=\left\{\begin{array}{lll}110 & 0\end{array}\right\}$ and R_{A} is 1.98 R instead of ideal 2 R ?

Fig. P10
11. Consider the multiply-by-two gain circuitry shown in Fig. P11.
(a) For C_{1} is twice the capacitance of C_{2}, and assuming the opamp has an input offset designated as $\mathrm{V}_{\text {off }}$, find the values of $\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}$ and $\mathrm{V}_{\text {out }}$ at the end of each of the phases shown. (8\%)
(b) What is the value of $\mathrm{V}_{\text {out }}$ when C_{2} is twice the capacitance of C_{1} at the end of the Phase4? (2\%)
(c) How to obtain $\mathrm{V}_{\text {out }}=3 \mathrm{~V}_{\text {in }}$ with this circuit? (5\%)

Fig. P11

12. Use $\mathrm{C}_{\mathrm{H}}, \mu_{\mathrm{n}} \mathrm{Cox}_{\mathrm{ox}}$, (W/L), V_{DD} and NMOS threshold voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$ to answer question (a) and (b).
(a) In Fig P12 (a), please explain why an NMOS sampler passes a weak "1" and find the typical maximum output level of it. (5\%)
(b) For the sampling circuit in Fig. P12 (b), please derive the output voltage vo as a function of time (t), $\mathrm{C}_{\mathrm{H}}, \mu_{\mathrm{n}} \mathrm{Cox}_{\mathrm{ox}},(\mathrm{W} / \mathrm{L}), \mathrm{V}_{\mathrm{DD}}$ and NMOS threshold voltage $\left(\mathrm{V}_{\mathrm{T}}\right)$, where the initial output voltage is assumed to be vo $(\mathrm{t}=0)=\mathrm{V}_{\text {DD }}$. (Neglect early effect and body effect.) (15\%) Hint: MOS current in triode region: $\mathrm{I}_{\mathrm{D}}=\frac{1}{2} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}}\left(\frac{\mathrm{W}}{\mathrm{L}}\right)\left\{\mathrm{V}_{\mathrm{DS}}\left[2\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)-\mathrm{V}_{\mathrm{DS}}\right]\right\}$

Fig. P12(a)
Fig. P12(b)
13. Two switched-capacitor integrators are shown in Fig. P13(a) and Fig. P13(b), where the nonoverlapping clocks, Φ_{1} and Φ_{2}, for both of them are depicted in Fig. P13(c). An extra switch near the output is shown to indicate that output signal is valid at the end of Φ_{1}. If the offset voltage $V_{\text {OFF }}$ modelled at the non-inverting input are taken into consideration and the OPAMPs are assumed to be ideal, please
(a) Derive the z -domain transfer function of $\mathrm{V}_{\text {in }}$ to $\mathrm{V}_{\text {out }}$ for Fig. P13(a) (7\%)
(b) Derive the z -domain transfer function of $\mathrm{V}_{\text {in }}$ to $\mathrm{V}_{\text {out }}$ for Fig. P13(b) (8\%)
(c) List 2 advantages of the integrator in Fig. P13(b) compared with the one in Fig. P13(a) (5\%)

Fig. P13(a)

Fig. P13(c)

Fig. P13(b)
14. As shown in Fig. P14, the comparator is operated with offset cancellation, where C_{in} is the input capacitance of the OPAMP and A_{0} is the OPAMP gain. Assume that the three switches are ideal.
(a) Briefly describe how this circuit operates. (5\%)
(b) Please derive $\mathrm{V}_{\text {out }}$ in terms of $\mathrm{V}_{\text {in }}, \mathrm{C}_{\text {main }}, \mathrm{C}_{\text {parasitic }}, \mathrm{C}_{\text {in }}$ and A_{0}. (5\%)
(c) If the two terminals of C are interchanged, derive $\mathrm{V}_{\text {out }}$ in terms of $\mathrm{V}_{\text {in }}, \mathrm{C}_{\text {main }}, \mathrm{C}_{\text {parasitic }}, \mathrm{C}_{\mathrm{in}}$ and A_{o}. (5\%)
(d) Based on the derivations in (b) and (c), which placement of C is the better choice? (5\%)

Fig. P14
15. A multiplying DAC (MDAC) of pipelined ADCs is shown in Fig. P15(a), where $\mathrm{C}_{\mathrm{s}}=3 \mathrm{C}_{\mathrm{f}}$. Fig. P15(b) shows the corresponding non-overlapped waveforms. Neglect the effects of finite slew rate of OPAMP.
(a) Assume the OPAMP has a finite dc gain of 60dB and an infinite unity-gain bandwidth, please calculate the gain of MDAC. (10%) If the gain error, $\left|4 \mathrm{~V}_{\mathrm{in}}-\mathrm{V}_{\text {out }}\right|$, is less than $0.002 \mathrm{~V}_{\mathrm{in}}$, please find the minimum required OPAMP dc gain. (5\%)
(b) Assume the OPAMP has an infinite dc gain and a finite unity-gain bandwidth ω_{u}, where the OPAMP transfer function $\mathrm{A}(\mathrm{s})=\frac{\omega_{u}}{s}$. Please calculate the minimum required ω_{u} such that 0.1% settling error in a time of 10 ns can be achieved. (10\%)

Hint : $\mathcal{L}^{-1}\left[1 / s\left(1+\frac{s}{\alpha}\right)\right]=\left(1-e^{-\alpha t}\right) \cdot u(t)$, where $\mathrm{u}(\mathrm{t})$ is a unit step function.

Fig. P15(a)

Fig. P15(b)
16. As shown in Fig. P16, there is a multiplying-by-four gain amplifier. The accuracy of the amplifier is influenced by OPAMP's offset voltage $V_{\text {offset }}$, OPAMP's noise $V_{n_{-}}$op (t) and reference voltage's noise $\mathrm{V}_{\mathrm{n}_{\mathrm{V}} \mathrm{vm}}(\mathrm{t})$. Assuming the gain of the OPAMP is infinite.
(a) Only considering the offset voltage $\mathrm{V}_{\text {offset }}$, briefly describe how the circuit reduces the offset voltage $\mathrm{V}_{\text {offset. }}$ (5\%)
(b) Only considering the OPAMP's noise $\mathrm{V}_{\mathrm{n}_{-} \mathrm{op}}(\mathrm{t})$, please derive the z -domain transfer function of $\mathrm{V}_{\mathrm{n} _ \text {op }}$ to $\mathrm{V}_{\text {out }}$ and plot the gain v.s. frequency. (5\%)
(c) Only considering the reference voltage's noise $\mathrm{V}_{\mathrm{n}_{-} v \mathrm{~cm}}(\mathrm{t})$, please derive the z -domain transfer function of $\mathrm{V}_{\mathrm{n}_{-} \mathrm{vcm}}$ to $\mathrm{V}_{\text {out }}$ and plot the gain v.s. frequency. (5\%)

Fig. P16
17. For the circuit diagram shown in Fig. P17, please draw its ideal input/output characteristic, i.e., transfer curve and explain how the gain-error and offset-error are generated.

Fig. P17
18. Fig. P18(a) is a signal processing system including a switch-capacitor filter (SCF), an A/D converter, an ideal digital low pass filter (LPF), and a down-sampler. The ADC sampling rate f_{S} is 50 kHz . The circuit of SCF is shown in Fig. P18(b), where $\mathrm{f}_{\mathrm{C}}=1 / \mathrm{T}_{\mathrm{C}}=500 \mathrm{kHz}$ and the ideal OPAMP has infinite dc gain and infinite unity-gain bandwidth. The frequency spectrum of the LPF response is shown is Fig. P18(c), where ω_{u} is LPF cut-off frequency.
(a) Derive the s-domain transfer function of $\mathrm{V}_{\text {in }}$ to $\mathrm{V}_{\text {out }}$ and its unity-gain frequency by using $\omega, \mathrm{C}_{1}, \mathrm{C}_{2}$, and T_{C} in Fig. P18(b). Assume $\omega \mathrm{T}_{\mathrm{C}} \ll 1$.
(b) Derive the minimum $\mathrm{C}_{2} / \mathrm{C}_{1}$ ratio for SCF to prevent A / D converter from aliasing.
(c) Derive the maximum output frequency (unit: Hz) of $\mathrm{Y}_{\text {out }}$ to reconstruct signal without aliasing.

Fig. P18(a)
Fig. P18(b)

Fig. P18(c)
19. (a) Consider an 6-bit binary-weighted resistor D/A converter composed of $R_{1}, R_{2}, \ldots R_{6}$, where all resistor tolerances are $\pm 5 \%$. Please derive the worst-case differential nonlinearity in units of LSBs and if the D/A converter can be guaranteed to be monotonic? Why?
(b) A 12-bit binary-weighted resistor D / A converter composed of $R_{1}, R_{2}, \ldots R_{12}$ produce a glitch voltage of -0.5 V when digital code changes from $100 \ldots 00$ to $011 \ldots 11$ because MSB switch turns off early. Please derive the glitch voltage when MSB switching if a thermometer-code approach is used for the top 7 bits, whereas binary-weighting is used for the remaining 5 bits.

