Final Exam Analog IC Design NCKUEE

- For the system in Fig. P1(a), the sampling frequency fs of the ideal ADC is 150 kHz and the spectrum of xa(t) is shown in Fig. P1(b).
 - (a) Please design the cut off frequency ω_c of the ideal low pass filter shown in Fig. P1(c) to avoid the aliasing effect when the down-sampling factor is 3. (5%)
 - (b) Please plot the spectra of, x_d[n], x_{LPF}[n] and x_{out}[n], respectively (You need to mark the magnitude and corresponding frequency on each spectrum). (15%)

- 2. Briefly describe the following questions.
 - (a) Draw a latched comparator circuit. Explain why its input hysteresis, i.e., memory effect, exists. (5%)
 - (b) Please draw the circuit diagram of a 3-bit flash A/D converter. Explain what problems should be noticed in designing this type of ADC (List at least 2 problem). (10%)
 - (c) Please draw the circuit diagrams of a 3-bit binary-weighted DAC and a thermometer-code currentsteering DAC. Please evaluate the maximum DNL and gain-error for these two DACs' in (a), respectively. Assume the maximum mismatch error of 1:1 current mirror is ±1%. (20%)
 - (d) List and briefly explain a S/H circuit design with signal-independent switch errors. Please give 2 methods to minimize signal-dependent switch error, and explain how they work. (10%)
 - (e) Please explain the pre-filtering and post-filtering strategies for conventional high-resolution signalprocessing systems utilizing Nyquist-rate ADCs and DACs, respectively. (20%)
 - (f) Please explain the pre-filtering strategies for conventional Nyquist-rate A/D converters (5%) and oversampling A/D converters. Explain the bandwidths chosen for the filters used. (5%)
 - (g) Draw the cross section of the parasitic PNP and the circuit diagram of CMOS N-well bandgap voltage reference operating in weak inversion. Derive an equation to express the reference voltage V_{ref}. Channel length modulation effect can be ignored. Please explain why a bandgap voltage reference is temperature independent. (10%)
- What is the SNR of an ideal 12-bit unipolar ADC with V_{REF}=0.8V when a sinusoidal input of 0.15V~0.65V is applied? (5%) What size input (V_{pp}) would result in an SNR of 35dB? (5%)
- 4. A sinusoidal input of $0.8V_{pp}$ is applied to an ideal N-bit unipolar ADC with $V_{ref}=1V$. If the requirement of SNR is at least 70dB, please calculate the minimum bit number N and find SNR when the amplitude of sinusoidal input is changed to $60mV_{pp}$.

- 5. A Multiplying DAC (MDAC) and the waveform of its non-overlapped clock is shown in Fig. P5 (a) and Fig. P5 (b), respectively. In an ideal case, the MDAC output can be expressed as V_{out}=2V_{in}. However, in an actual case, the opamp finite DC gain, A, parasitic capacitor of opamp input node, C_p, and capacitor mismatch, C_s≠C_f, would degrade the accuracy of the MDAC output.
 - (a) Please express the MDAC output in term of A, C_s, C_f, C_p and V_{in}. (10%)
 - (b) Assuming C_f=C_s=C and C_p=1/20C, please calculate the minimum opamp DC gain A such that |2Vin-Vout| is less than 0.001Vin? (5%)

- Fig. P6 shows a 3-bit R-2R-based DAC. Due to mismatch effect, the resistance of R_A and R_B are 0.9R and 1.1R respectively. Assume that the opamp is ideal, V_{REF}=1.8V and R_f=R. (Hint: Compared with ideal R-2R-based DAC)
 - (a) Find the offset and gain errors in unit of LSB. (6%)
 - (b) Find the INL (endpoint) errors in unit of LSB. (12%)
 - (c) Find the DNL errors in unit of LSB. (12%)
 - (d) Is this DAC monotonic? Why? (5%)

- 7. Consider a 3-bit D/A converter in which $V_{REF} = 1.2V$ (that is, 000 refers to 0V and 111 refers to 1.05V), with the following measured voltage values: { 0.031 : 0.204 : 0.312 : 0.467 : 0.619 : 0.814 : 0.802 : 1.124}
 - (a) Find the offset and gain errors in unit of LSB. (10%)
 - (b) Find the INL (endpoint) errors in unit of LSB. (10%)
 - (c) Find the DNL errors in unit of LSB. (10%)
 - (d) Is the input/output transfer curve of the D/A converter monotonic? Why? (5%)

- 8. Fig. P8(a)~(c) shows a 5-bit modified successive approximation A/D converter which operates in different mode.
 - (a) According to Fig. P8(a)~(c), please describe the operation. (6%)
 - (b) According to Fig. P8(a)~(c), please calculate the V_x value in terms of V_{in} , V_{ref} where parasitic capacitance (C_p) at node V_x can be ignored. (9%)
 - (c) Assume parasitic capacitance (C_p) at node V_x can be ignored. Please derive the digital output ($b_1 \sim b_5$) where $V_{in} = 1.15V$ and $V_{ref} = 2V$. (5%)
 - (d) Assume parasitic capacitance (C_p) of 3C exists at node V_x . Please calculate the V_x value where $b_1 \sim b_5$ is switch to the digital output calculated in (b). (5%)

- 9. The deterministic approach for calculation of ADC quantization noise is shown in Fig. P9(a). A ramp input signal $(V_{in}(t))$ is injected into the ADC and the staircase output signal $(V_{out}(t))$ is the output of an ideal DAC converting the ADC digital output (B_{out}). Quantization error ($V_Q(t)$) can be given as $V_{out}(t)$ – V_{in}(t). Both V_{in}(t) and V_{out}(t) for the ideal 2-bit ADC is shown in Fig. P9(b). (No overloading is assumed.)
 - (a) Please plot $V_0(t)$ for the ideal 2-bit ADC and mark upper bound, lower bound, and timing. (10%)
 - (b) Please derive root mean squared quantization error $V_Q(rms) = V_{LSB} / \sqrt{12}$. (10%)
 - (c) Please derive SNR of N-bit ideal ADC under sine input signal with a peak-to-peak amplitude V_{ref}, where SNR (N-bit) = 6.02*N+1.76 (dB). (10%)

Fig. P9(a)

10. For a 4-bit R-2R-ladder DAC converter shown in Fig. P10, what is the output error (in LSBs) when input digital word is {b1 b2 b3 b4}={1 1 0 0} and R_A is 1.98R instead of ideal 2R?

- 11. Consider the multiply-by-two gain circuitry shown in Fig. P11.
 - (a) For C₁ is twice the capacitance of C₂, and assuming the opamp has an input offset designated as V_{off}, find the values of V_{C1}, V_{C2} and V_{out} at the end of each of the phases shown. (8%)
 - (b) What is the value of V_{out} when C_2 is twice the capacitance of C_1 at the end of the Phase4 ? (2%)
 - (c) How to obtain $V_{out} = 3 V_{in}$ with this circuit ? (5%)

- 12. Use C_H, µ_nC_{OX}, (W/L), V_{DD} and NMOS threshold voltage (V_T) to answer question (a) and (b).
 - (a) In Fig P12 (a), please explain why an NMOS sampler passes a weak "1" and find the typical maximum output level of it. (5%)
 - (b) For the sampling circuit in Fig. P12 (b), please derive the output voltage v_O as a function of time (t), C_H, μ_nC_{OX}, (W/L), V_{DD} and NMOS threshold voltage (V_T), where the initial output voltage is assumed to be v_O (t=0)=V_{DD}. (Neglect early effect and body effect.) (15%) Hint: MOS current in

- 13. Two switched-capacitor integrators are shown in Fig. P13(a) and Fig. P13(b), where the nonoverlapping clocks, Φ_1 and Φ_2 , for both of them are depicted in Fig. P13(c). An extra switch near the output is shown to indicate that output signal is valid at the end of Φ_1 . If the offset voltage V_{OFF} modelled at the non-inverting input are taken into consideration and the OPAMPs are assumed to be ideal, please
 - (a) Derive the z-domain transfer function of V_{in} to V_{out} for Fig. P13(a) (7%)
 - (b) Derive the z-domain transfer function of V_{in} to V_{out} for Fig. P13(b) (8%)
 - (c) List 2 advantages of the integrator in Fig. P13(b) compared with the one in Fig. P13(a) (5%)

- 14. As shown in Fig. P14, the comparator is operated with offset cancellation, where C_{in} is the input capacitance of the OPAMP and A_0 is the OPAMP gain. Assume that the three switches are ideal.
 - (a) Briefly describe how this circuit operates. (5%)
 - (b) Please derive V_{out} in terms of V_{in}, C_{main}, C_{parasitic}, C_{in} and A_o. (5%)
 - (c) If the two terminals of C are interchanged, derive V_{out} in terms of V_{in}, C_{main}, C_{parasitic}, C_{in} and A_o.
 (5%)
 - (d) Based on the derivations in (b) and (c), which placement of C is the better choice? (5%)

Fig. P14

- 15. A multiplying DAC (MDAC) of pipelined ADCs is shown in Fig. P15(a), where $C_s=3C_f$. Fig. P15(b) shows the corresponding non-overlapped waveforms. Neglect the effects of finite slew rate of OPAMP.
 - (a) Assume the OPAMP has a finite dc gain of 60dB and an infinite unity-gain bandwidth, please calculate the gain of MDAC. (10%) If the gain error, |4V_{in}-V_{out}|, is less than 0.002V_{in}, please find the minimum required OPAMP dc gain. (5%)
 - (b) Assume the OPAMP has an infinite dc gain and a finite unity-gain bandwidth ω_u , where the OPAMP transfer function A(s) = $\frac{\omega_u}{s}$. Please calculate the minimum required ω_u such that 0.1% settling error in a time of 10ns can be achieved. (10%)

- 16. As shown in Fig. P16, there is a multiplying-by-four gain amplifier. The accuracy of the amplifier is influenced by OPAMP's offset voltage V_{offset}, OPAMP's noise V_{n_op}(t) and reference voltage's noise V_{n_vcm}(t). Assuming the gain of the OPAMP is infinite.
 - (a) Only considering the offset voltage V_{offset}, briefly describe how the circuit reduces the offset voltage V_{offset}. (5%)
 - (b) Only considering the OPAMP's noise V_{n_op}(t), please derive the z-domain transfer function of V_{n_op} to V_{out} and plot the gain v.s. frequency. (5%)
 - (c) Only considering the reference voltage's noise V_{n_vcm}(t), please derive the z-domain transfer function of V_{n_vcm} to V_{out} and plot the gain v.s. frequency. (5%)

17. For the circuit diagram shown in Fig. P17, please draw its ideal input/output characteristic, i.e., transfer curve and explain how the gain-error and offset-error are generated.

Fig. P17

- 18. Fig. P18(a) is a signal processing system including a switch-capacitor filter (SCF), an A/D converter, an ideal digital low pass filter (LPF), and a down-sampler. The ADC sampling rate f_s is 50kHz. The circuit of SCF is shown in Fig. P18(b), where $f_c=1/T_c=500$ kHz and the ideal OPAMP has infinite dc gain and infinite unity-gain bandwidth. The frequency spectrum of the LPF response is shown is Fig. P18(c), where ω_u is LPF cut-off frequency.
 - (a) Derive the s-domain transfer function of V_{in} to V_{out} and its unity-gain frequency by using ω , C₁, C₂, and T_C in Fig. P18(b). Assume ω T_C \ll 1.
 - (b) Derive the minimum C_2/C_1 ratio for SCF to prevent A/D converter from aliasing.
 - (c) Derive the maximum output frequency (unit: Hz) of Y_{out} to reconstruct signal without aliasing.

19. (a) Consider an 6-bit binary-weighted resistor D/A converter composed of R₁, R₂, ... R₆, where all resistor tolerances are ± 5%. Please derive the worst-case differential nonlinearity in units of LSBs and if the D/A converter can be guaranteed to be monotonic? Why?

(b) A 12-bit binary-weighted resistor D/A converter composed of $R_1, R_2, ..., R_{12}$ produce a glitch voltage of -0.5V when digital code changes from 100...00 to 011...11 because MSB switch turns off early. Please derive the glitch voltage when MSB switching if a thermometer-code approach is used for the top 7 bits, whereas binary-weighting is used for the remaining 5 bits.