Basic Principles of Sinusoidal Oscillators

- Linear oscillator
 - Linear region of circuit: linear oscillation
 - Nonlinear region of circuit: amplitudes stabilization
- Barkhausen criterion

\[
\text{loop gain } L(s) = \beta(s)A(s)
\]
\[
\text{characteristic equation } 1-L(s) = 0
\]
\[
\text{oscillation criterion } L(j\omega_0) = A(j\omega_0) \beta(j\omega_0) = 1
\]
at ω_0, the phase of the loop should be zero and the magnitude of the loop gain should be unity. Oscillation frequency ω_0 is determined solely by

$$\Delta\omega_0 = \frac{\Delta\phi}{d\phi/d\omega}$$

A steep phase response results in a small $\Delta\omega_0$ for a given change in phase $\Delta\phi$.
Nonlinear Amplitude Control

- To sustain oscillation:\ $\beta A > 1$
 - a. overdesign for βA variations
 - b. oscillation will grow in amplitude
 - poles are in the right half of the s-plane
 - c. Nonlinear network reduces βA to 1 when the desired amplitude is reached
 - poles will be pulled to $j\omega$-axis
Nonlinear Amplitude Control (Cont.)

- Limiter circuit for amplitude control
 - linear region

\[V_O = -(\frac{R_i}{R_1})V_i \]

\[V_A = V \frac{R_3}{R_2 + R_3} + V_O \frac{R_2}{R_2 + R_3} \]

\[V_B = -V \frac{R_4}{R_4 + R_5} + V_O \frac{R_5}{R_4 + R_5} \]
Nonlinear Amplitude Control (Cont.)

- **nonlinear region**

\[V_O | V_A = -V_D = \left(-V \frac{R_3}{R_2 + R_3} \right) - V_D \]

\[= -V \frac{R_3}{R_2} - V_D \left(1 + \frac{R_3}{R_2} \right) \]

Similarly, \(L_+ = V \frac{R_4}{R_5} + V_D \left(1 + \frac{R_4}{R_5} \right) \)

\[\text{Slope} = -\frac{(R_f \parallel R_4)}{R_1} \]

\[\text{Slope} = -\frac{R_f}{R_1} \]

\[\text{Slope} = -\frac{(R_f \parallel R_3)}{R_1} \]
OPAMP-RC Oscillator Circuits

- Wien-bridge oscillator

\[L(s) = \left[1 + \frac{R_2}{R_1} \right] \frac{Z_p}{Z_p + Z_s} \]

\[= \frac{1 + \frac{R_2}{R_1}}{3 + SCR + \frac{1}{SCR}} \]

\[L(j\omega) = \frac{1 + \frac{R_2}{R_1}}{3 + j\left(\omega RC - \frac{1}{\omega RC}\right)} \]

--- For phase = 0, \(\omega_0 RC = \frac{1}{\omega_0 RC}\)

\[\Rightarrow \omega_0 = \frac{1}{RC} \]

--- \(L(s) = 1 \Rightarrow \frac{R_2}{R_1} = 2\)
OPAMP-RC Oscillator Circuits (Cont.)

- Wien-bridge oscillator with a limiter

![Diagram of Wien-bridge oscillator with a limiter]

- Circuit diagram with components labeled:
 - $R_3 = 3k$
 - $R_4 = 1k$
 - $R_5 = 1k$
 - $R_6 = 3k$
 - V_1, V_o
 - Diodes D_1, D_2
 - Capacitors $16nF$
 - Resistors $10k$
 - Analog circuit schematic
OPAMP-RC Oscillator Circuits (Cont.)

\[+ \quad \quad - \quad \quad 10k\Omega \quad 50k\Omega \quad b \quad a \quad v_o \]

\[16nF \quad 10k\Omega \]

\[16nF \quad 10k\Omega \]

Prof. Tai-Haur Kuo
12 - 8 Electronics(3), 2014
Phase-Shift Oscillator

- Without amplitude stabilization

\[-K \]

\[\begin{align*}
C & \quad C & \quad C \\
R & \quad R & \quad R \\
\end{align*} \]

------ phase shift of the RC network is 180 degrees.

\[\implies \text{Total phase shift around the loop is 0 or 360 degrees.} \]
Phase-Shift Oscillator (Cont.)

- With amplitude stabilization
Quadrature Oscillator

- OP₁: inverting integrator with amplitude control
- OP₂: noninverting integrator

Equivalent circuit at the input of OP₂

Set \(R_f = 2R \)

\[v = \frac{1}{C} \int_0^t \frac{v_{O1}}{2R} \, dt \]

(Nominally 2R)
Quadrature Oscillator (Cont.)

------ Break the loop at X, loop gain

\[L(s) = \frac{V_{o2}}{V_x} = \frac{1}{S^2C^2R^2} \]

\[\omega_0 = \frac{1}{RC} \]

------ \(V_{o2} \) is the integral of \(V_{o1} \)

\[90^\circ \text{ phase difference between } V_{o1} \text{ and } V_{o2} \]

\[\Rightarrow \text{“quadrature” oscillator} \]
Active-Filter Tuned Oscillator

- Block diagram

- High-distortion v_2
- High-Q bandpass \Rightarrow low-distortion v_1
Active-Filter Tuned Oscillator (Cont.)

- Practical implementation
A General Form of LC-Tuned Oscillator Configuration

- Many oscillator circuits fall into a general form shown below

\[Z_1, Z_2, Z_3 : \text{capacitive or inductive} \]
A General Form of LC-Tuned Oscillator Configuration (Cont.)

\[V_o = \frac{-A_v \hat{V}_{13} Z_L}{Z_L + R_O} \]

\[V_{13} = \frac{Z_1}{Z_1 + Z_3} V_o \quad T = \frac{V_{13}}{\hat{V}_{13}} = \frac{-A_v Z_1 Z_2}{R_O (Z_1 + Z_2 + Z_3) + Z_2 (Z_1 + Z_3)} \]

if \(Z_1 = jX_1, \quad Z_2 = jX_2, \quad Z_3 = jX_3 \)

\[X = \omega L \text{ for inductance} \quad X = -\frac{1}{\omega C} \text{ for capacitance} \]

\[T = \frac{A_v X_1 X_2}{jR_O (X_1 + X_2 + X_3) - X_2 (X_1 + X_3)} \]

for oscillation, \(T = 1\angle 0^\circ \)

\[\Rightarrow X_1 + X_2 + X_3 = 0 \]

\[\Rightarrow T = \frac{A_v X_1 X_2}{-X_2 (X_1 + X_3)} = \frac{-A_v X_1}{X_1 + X_3} \]

\[\Rightarrow T = \frac{A_v X_1}{X_2} \]
With oscillation
\[|T| = 1 \text{ and } \angle T = 0, 360, 720, \ldots \text{ degree.} \]
i.e. \[T = 1 \quad (X = \omega L \text{ or } X = -\frac{1}{\omega C}) \]
⇒ \[X_1 \text{ and } X_2 \text{ must have the same sign if } A_v \text{ is positive} \]
⇒ \[X_1 \text{ and } X_2 \text{ are } L, \quad X_3 = -(X_1 + X_2) \text{ is } C \]
or \[X_1 \text{ and } X_2 \text{ are } C, \quad X_3 = -(X_1 + X_2) \text{ is } L \]

Transistor oscillators
1. Collpitts oscillator
 -- \(X_1 \) and \(X_2 \) are Cs, \(X_3 \) is L
2. Hartley oscillator
 -- \(X_1 \) and \(X_2 \) are Ls, \(X_3 \) is C
LC Tuned Oscillators

- Two commonly used configurations
 - Colpitts (feedback is achieved by using a capacitive divider)
LC Tuned Oscillators (Cont.)

- Two commonly used configurations
 - Hartley (feedback is achieved by using an inductive divider)
LC Tuned Oscillators (Cont.)

- Colpitts oscillator
 - Equivalent circuit

\[
\begin{align*}
\text{C} &= C_\pi \text{ of transistor input } + C_2 \\
\text{R} &= \text{loss of inductor } + \text{load resistance of oscillator } + \text{output resistance of transistor}
\end{align*}
\]
LC Tuned Oscillators (Cont.)

\[V_O = V_\pi + sC_2V_\pi \cdot sL \]
\[sC_2V_\pi + g_mV_\pi + \left(\frac{1}{R} + sC_1\right)(1 + s^2LC_2)V_\pi = 0 \]
\[s^3LC_1C_2 + s^2\left(\frac{LC_2}{R}\right) + s(C_1 + C_2) + \left(g_m + \frac{1}{R}\right) = 0 \]
\[\left(g_m + \frac{1}{R} - \frac{\omega^2LC_2}{R}\right) + j[\omega(C_1 + C_2) - \omega^3LC_1C_2] = 0 \]

\[S = j\omega \]

◆ For oscillations to start, both the real and imaginary parts must be zero

◆ Oscillation frequency

\[\omega_0 = \frac{1}{\sqrt{L\left(\frac{C_1C_2}{C_1 + C_2}\right)}} \]
LC Tuned Oscillators (Cont.)

◆ Gain

\[g_m R = \frac{c_2}{c_1} \] (Actually, \(g_m R \geq \frac{c_2}{c_1} \))

◆ Oscillation amplitude

1. LC tuned oscillators are known as self – limiting oscillators. (As oscillations grown in amplitude, transistor gain is reduced below its small – signal value)

2. Output voltage signal will be a sinusoid of high purity because of the filtering action of the LC tuned circuit

◆ Hartley oscillator can be similarity analyzed
Crystal oscillators

- Symbol of crystal

- Circuit model of crystal
Crystal oscillators (Cont.)

- Reactance of a crystal assuming \(r = 0 \)

\[
Z(s) = \frac{1}{sC_p + \frac{1}{sL + \frac{1}{sC_s}}} = \frac{1}{sC_p} \left(s^2 + \frac{1}{LC_s} \right) \quad \left(\text{Crystal is high – Q device} \right)
\]

Let
\[
\begin{align*}
\omega_s^2 &= \frac{1}{LC_s} \\
\omega_p^2 &= \frac{1}{L} \left(\frac{1}{C_s} + \frac{1}{C_p} \right)
\end{align*}
\]

\[
Z(j\omega) = -j\frac{1}{\omega C_p} \left(\frac{\omega^2 - \omega_s^2}{\omega^2 - \omega_p^2} \right)
\]

If \(C_p \gg C_s \), then \(\omega_p \approx \omega_s \)
Crystal oscillators (Cont.)

- The crystal reactance is inductive over the narrow frequency band between ω_s and ω_p

- Colpitts crystal oscillator
 - Configuration
 - Equivalent circuit

\[
C_S \ll C_P, C_1, C_2
\]

\[
\Rightarrow \omega_0 \approx \frac{1}{\sqrt{LC_S}} = \omega_s \approx \omega_p
\]
Crystal oscillators (Cont.)

- Pierce oscillator
 - Almost all digital clock oscillators are Pierce oscillators
 - Derived from Colpitts oscillator
 → Inverter with feedback resistor as an inverting amplifier
 → Replacement of the CE amplifier
Multivibrators

- Multivibrators (3 types)
 - bistable: two stable states
 - monostable: one stable state
 - astable: no stable state

- Bistable
 - Has two stable states
 - Can be obtained by connecting an amplifier in a positive-feedback loop having a loop gain greater than unity. I.e. $\beta A > 1$ where $\beta = R_1/(R_1+R_2)$
Bistable Multivibrators (Cont.)

◆ Bistable circuit with clockwise hysteresis

![Circuit Diagram]

◆ Clockwise hysteresis (or inverting hysteresis)

\[L_+ : \text{positive saturation voltage of OPAMP} \]
\[L_- : \text{negative saturation voltage of OPAMP} \]

\[V_{TH} = \beta L_+ = \frac{R_1}{R_1 + R_2} L_+ \]

\[V_{TL} = \beta L_- = \frac{R_1}{R_1 + R_2} L_- \quad \Rightarrow \text{Hysteresis width} = V_{TH} - V_{TL} \]
Noninverting Bistable Circuit

- Counterclockwise hysteresis
- Configuration

\[v_+ = v_1 \frac{R_2}{R_1 + R_2} + v_o \frac{R_1}{R_1 + R_2} \]

For \(v_o = L_+ \), \(v_+ = 0 \), \(v_1 = V_{TL} \) \(\Rightarrow V_{TL} = -L_+ \left(\frac{R_1}{R_2} \right) \)

For \(v_o = L_- \), \(v_+ = 0 \), \(v_1 = V_{TH} \) \(\Rightarrow V_{TH} = -L_- \left(\frac{R_1}{R_2} \right) \)
Noninverting Bistable Circuit (Cont.)

- Comparator characteristics with hysteresis
 - Can reject interference

\[V_{TL} \]
\[V_{TH} \]
\[R \]
\[V_0 \]

\[t \]
\[V_R = 0 \]
\[V_{TH} \]
\[V_{TL} \]

Multiple Zero crossings
Signal corrupted with interference
Can reject interference
Generation of Square and Triangular Waveforms using Astable Multivibrators

- Can be done by connecting a bistable multivibrator with a RC circuit in a feedback loop.

\[V_{TH} = \beta L_+ \]
\[V_{TL} = \beta L_- \]
Generation of Square and Triangular Waveforms using Astable Multivibrators (Cont.)

\[v_{O}(t) = \begin{cases} \beta L_+ & (0 < t < T_1) \\ \beta L_- & (T_1 < t < T_2) \end{cases} \]

Time constant \(\tau = RC \)
Generation of Square and Triangular Waveforms using Astable Multivibrators (Cont.)

- During T1

\[V_- = L_+ - (L_+ - \beta L_-)e^{\frac{-t}{\tau}} \]

where \(\tau = RC \), \(\beta = \frac{R_1}{R_1 + R_2} \)

if \(V_- = \beta L_+ \) at \(t = T_1 \) \(\Rightarrow \) \(T_1 = \tau \ln \frac{1 - \beta (L_- / L_+)}{1 - \beta} \)

- During T2

\[V_- = L_- - (L_- - \beta L_+)e^{\frac{-t}{\tau}} \]

if \(V_- = \beta L_- \) at \(t = T_2 \) \(\Rightarrow \) \(T_2 = \tau \ln \frac{1 - \beta (L_+ / L_-)}{1 - \beta} \)

\(T = T_1 + T_2 = 2\tau \ln \frac{1 + \beta}{1 - \beta}; (L_+ = -L_- \) is assumed)
Generation of Triangular Waveforms

\[V_2 \]

\[T_1 \rightarrow T_2 \]

\[L_+ \]

0

\[L_- \]

\[T \]

\[\text{Slope} = \frac{-L_+}{RC} \]

\[\text{Slope} = \frac{-L_-}{RC} \]
Generation of Triangular Waveforms (Cont.)

- During T_1
 \[V_{TL} - V_{TH} = -\frac{1}{C} \int_0^{T_1} i_C dt = \frac{L_+ T_1}{RC}; \quad \text{where } i_C = \frac{L_+}{R} \]
 \[\Rightarrow T_1 = RC \frac{V_{TH} - V_{TL}}{L_+} \]

- During T_2
 Similarly
 \[\Rightarrow T_2 = RC \frac{V_{TH} - V_{TL}}{-L_-} \]

- To obtain symmetrical waveforms
 \[T_1 = T_2 \Rightarrow L_+ = -L_- \]
Monostable Multivibrators

- Its alternative name is “one shot”
- Has one stable state
- Can be triggered to a quasi-state

\[
\begin{align*}
\beta L_+ - V_{D_2} \rightarrow V_E(t) \\
L_+ \rightarrow V_A(t) \\
L_- \rightarrow T \\
\beta L_+ \rightarrow V_+(t) \\
\beta L_- \rightarrow V_-(t) \\
V_{D_1} \rightarrow V_B(t) \\
\beta L_- \rightarrow \text{To } L_- \\
\beta L_+ \rightarrow \text{To } L_+
\end{align*}
\]
Monostable Multivibrators (Cont.)

- During T_1

\[V_B(t) = L_+ - (L_+ - V_{D1})e^{-\frac{t}{R_3C_1}} \]

\[V_B(T) = \beta L_+ \Rightarrow \beta L_+ = L_+ - (L_+ - V_{D1})e^{-\frac{T}{R_3C_1}} \]

\[\Rightarrow T = R_3C_1 \ln\left(\frac{V_{D1} - L_-}{\beta L_+ - L_-}\right) \]

For $V_{D1} \ll |L_-| \Rightarrow T \approx R_3C_1\left(\frac{1}{1-\beta}\right)$

- βL_+ is greater then V_{D1}

\[\Rightarrow \text{Stable state is maintained} \]
Monostable Multivibrators (Cont.)

- Monostable multivibrator using NOR gates

\[V_{in} \quad V_{o1} \quad V_{x} \quad V_{o2} \]

\[V_{DD} \quad R \]

\[V_{in} \quad V_{o1} \quad V_{x} \quad V_{o2} \]

\[V_{DD} \quad V_{DD} + V_{T} = 3/2 \times V_{DD} \]

\[V_{T} = V_{DD}/2 \]
Mono-stable Multivibrator (Cont.)

\[v_c(0) = 0 \]

\[v_x = V_{DD}(1 - e^{-\frac{t}{RC}}) \]

\[v_x(T_1) = V_T = V_{DD}(1 - e^{-\frac{T_1}{RC}}) \]

\[\Rightarrow T_1 = RC\ln\left(\frac{V_{DD}}{V_{DD} - V_T}\right) \approx RC\ln2 \approx 0.693RC \]

where \(V_T \approx \frac{V_{DD}}{2} \); \(V_T \) is NOR gate threshold voltage
Mono-stable Multivibrator (Cont.)

- Monostable multivibrator with catching diode

\[\text{RC constant } T = \frac{V_{DD} - 5V}{V_D} \]

\[\text{forward resistance of diode} \]

Time constant = \(R_C \)

Time constant = \(R_T \)

\[V_x = 5.6V \]

\[V_{in}, V_{01}, V_{o2} \]
Astable Multivibrator Using NOR(or Inverter) Gates

- Transient behavior
 (1) $0 < t < T_1$
 (i) $v_{o1} : V_{DD} \rightarrow 0$ when $t = 0$
 (ii) $v_{o2} : 0 \rightarrow V_{DD}$ when $t = 0$
 (iii) $v_x = (V_{DD} + V_T) e^{-\frac{t}{RC}}$
 (iv) $v_c = v_x - v_{o2} = -V_{DD} + (V_{DD} + V_T) e^{-\frac{t}{RC}}$
Astable Multivibrator Using NOR(or Inverter) Gates

(Cont.)

(2) $T_1 < t < (T_1 + T_2)$

(i) $v_{o1} : 0 \rightarrow V_{DD}$ when $t = T_1$

(ii) $v_{o2} : V_{DD} \rightarrow 0$ when $t = T_1$

(iii) $v_x = V_{DD} - (V_{DD} + V_T) e^{-\frac{(t-T_1)}{RC}}$

(iv) $v_c = v_x - V_{O2} = v_x = V_{DD} - (V_{DD} + V_T) e^{-\frac{(t-T_1)}{RC}}$
Astable Multivibrator Using NOR(or Inverter) Gates (Cont.)

- Oscillation frequency

 \[v_x(T_1) = V_T \]

 \[\Rightarrow (V_{DD} + V_T) e^{-\frac{t}{RC}} = V_T \]

 \[\Rightarrow T_1 = RC \ln \frac{V_{DD} + V_T}{V_T} \]

 If \(V_T = \frac{V_{DD}}{2} \), then \(T_1 = RC \ln 3 \) and \(T_2 = RC \ln 3 \)

 Oscillation frequency \[f_0 = \frac{1}{2RC \ln 3} \approx \frac{0.455}{RC} \]
Astable Multivibrator Using NOR(or Inverter) Gates (Cont.)

- With catching diode at V_x

- Asymmetrical square wave

\[T_1 = T_2 = RC\ln 2 \]
\[f_0 = \frac{1}{2RC\ln 2} \approx \frac{0.721}{RC} \]

- (i) $V_T \neq \frac{V_{DD}}{2}$
- (ii) $R_1 \neq R_2$
The 555 IC Timer

- Widely used as both a monostable and astable multivibrator
- Used as a monostable multivibrator

<table>
<thead>
<tr>
<th>R_n</th>
<th>S_n</th>
<th>Q_{n+1}</th>
<th>$V_{TH} = \frac{2}{3}V_{CC}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q_n</td>
<td>$V_{TL} = \frac{1}{3}V_{CC}$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>N/A</td>
<td>$V_c \geq \frac{2}{3}V_{CC} \Rightarrow R_n = 1$</td>
</tr>
</tbody>
</table>

$V_{c}(t) = \frac{2V_{CC}}{3}$

$V_{CC}(1 - e^{-t/RC})$
The 555 IC Timer (Cont.)

◆ For $0 \leq t \leq T_1$

$$v_C(t) = V_{CC} - [V_{CC} - V_C(0)]e^{-\frac{t}{RC}} \quad (V_C(0) \approx V_{CE(sat)} \approx 0)$$

◆ For $t = T_1$, $v_C(T_1) = V_{TH} = \frac{2V_{CC}}{3}$

$$\Rightarrow T_1 = RC \ln \frac{V_{CC} - V_C(0)}{V_{CC}} \approx RC \ln 3 \quad (V_C(0) \approx 0)$$
The 555 IC Timer (Cont.)

- Used as an astable multivibrator

\[
\begin{align*}
V_{CC} &= (R_A + R_B)C \\
V_{TH} &= \frac{2V_{cc}}{3} \\
V_{TL} &= \frac{V_{cc}}{3}
\end{align*}
\]

\[
\begin{align*}
V_c &\geq \frac{2V_{cc}}{3} \Rightarrow S = 0, R = 1 \\
V_c &\leq \frac{V_{cc}}{3} \Rightarrow S = 1, R = 0 \\
\frac{V_{cc}}{3} &\leq V_c \leq \frac{2V_{cc}}{3} \Rightarrow S = R = 0 \\
T_1 &= R_B C \ln 2 \quad T_2 - T_1 = (R_A + R_B)C \ln 2
\end{align*}
\]

- Oscillation frequency

\[
f = \frac{1}{T_2} = \frac{1}{(R_A + 2R_B)C \ln 2}
\]
Appendix

- Sine-wave shaper
- Precision rectifier circuits
- Precision full-wave rectifiers
- Peak rectifier
- Crystal oscillators
Sine-Wave Shaper

- Shape a triangular waveform into a sinusoid
- Extensively used in function generators
- Note: linear oscillators are not cost-effective for low frequency application and not easy to time over wide frequency ranges
Sine-Wave Shaper (Cont.)

- Nonlinear-amplification method
 - For various input values, their corresponding output values can be calculated

 \[
 \text{Transfer curve can be obtained and is similar to}
 \]

![Circuit Diagram]
Sine-Wave Shaper (Cont.)

- Breakpoint method
 - Piecewise linear transfer curve
 - Low-valued R is assumed \(\Rightarrow V_1 \) and \(V_2 \) are constant

\[
V_1 < V_{in} < V_1 \Rightarrow V_{out} = V_{in}
\]

\[
V_1 < V_{in} < V_2 \Rightarrow D_2 \text{ is on (voltage drop } V_D) \\
\Rightarrow V_0 = V_1 + V_D + (V_{in} - V_D - V_1) \frac{R_5}{R_5 + R_4}
\]

\[
V_2 < V_{in} \Rightarrow D_1 \text{ is on } \Rightarrow \text{limit } V_0 \text{ to } V_2 + V_D
\]
Sine-Wave Shaper (Cont.)

\[+ V \]

\[D_1 \]
\[R_1 \]
\[+ V_2 \]
\[D_2 \]
\[R_2 \]
\[+ V_1 \]
\[D_3 \]
\[R_3 \]
\[- V_1 \]
\[D_4 \]
\[R_3 \]
\[- V_2 \]
\[R_1 \]
\[- V \]

\[\text{in} \]
\[\text{out} \]

\[\text{in} \]
\[\text{out} \]

\[+ V_2 \]
\[+ V_1 \]
\[- V_1 \]
\[- V_2 \]

\[1 \]
\[2 \]
\[3 \]
\[4 \]
\[5 \]
Precision Rectifier Circuits

- Precision half-wave rectifier --- “superdiode”

- An alternate circuit
Precision Rectifier Circuits (Cont.)

- Application: Measure AC voltages

Average $V_1 = \frac{V_p R_2}{\pi R_1}$; where V_p is the peak amplitude of an input sinusoid
Precision Rectifier Circuits (Cont.)

If \(\frac{1}{R_4C} \ll \omega_{\text{min}} \); \(\omega_{\text{min}} \) is the lowest expected frequency of the input sine wave

\[V_2 = -\frac{V_P}{\pi} \frac{R_2 R_4}{R_1 R_3} \]
Precision Full-Wave Rectifiers
Precision Full-Wave Rectifiers (Cont.)
Peak Rectifier

- With load

- buffered

Prof. Tai-Haur Kuo
Crystal oscillators

\[L = 61 \text{ to } 122 \mu\text{H} \]

\[C = 300 \text{ pF} \]

Bias circuit

(For AC, -22V and ground are the same = 0)
Since return ratio $T = \frac{A_v X_1}{X_2}$ then X_1 must be large for the loop gain to be greater than one.

X_1 is very large when \(\omega \) closes to ω_p and \(\omega_s < \omega < \omega_p \)

$X_1 + X_2 + X_3 = 0 \quad \& \quad X_3 = -\frac{1}{\omega C} \Rightarrow X_1 \& X_2$ are inductive

\[
Z_2 = \frac{1}{j\omega C + \frac{1}{j\omega L}} = \frac{j}{-\omega C + \frac{1}{\omega L}}
\]

\[
\Rightarrow X_2 = \frac{1}{-\omega C + \frac{1}{\omega L}} > 0 \Rightarrow \omega L > \frac{1}{\omega C} \Rightarrow \omega > \frac{1}{\sqrt{LC}}
\]

For 1MHz crystal,

\[
\begin{align*}
C &= 300\text{pF} \\
L &\approx 84.4\mu\text{H} \\
\frac{1}{2\pi \sqrt{LC}} &\approx 1\text{MHz}
\end{align*}
\]