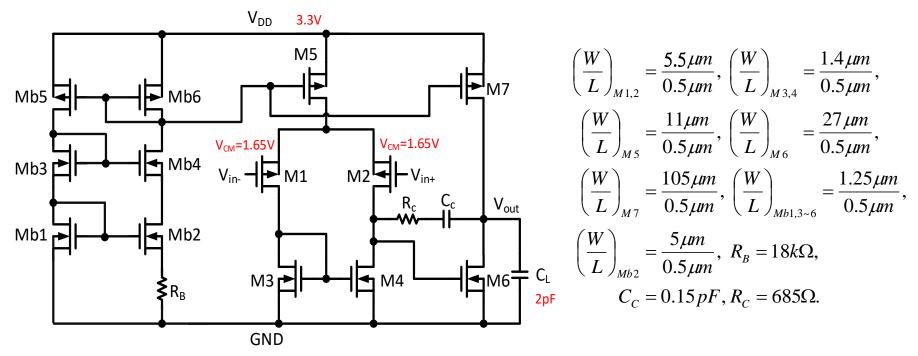

## Electronics (3) Homework3


- 1. Fig.1 shows a filter, where  $R_1=2M\Omega$ ,  $R_2=2M\Omega$ ,  $C_1=1nF$ ,  $C_2=10pF$ ,  $C_L=2pF$ . Assume that the  $OP_1$  has an infinite DC gain and an infinite bandwidth, please  $V_{in}$ 
  - (a) Derive the transfer function of the filter.
  - (b) Draw the magnitude/phase Bode plots of the filter by hand.



- 2. In Fig.1, assume that  $V_{DD}$ =3.3V,  $V_B$  is biased at 1.65V, and the common-mode voltage of  $V_{in}$  is  $V_{CM}$ =1.65V. Please replace the OP<sub>1</sub> with the transistor-level circuit of the two-stage op amp designed by yourself in HW2.
  - (a) List the DC gain (A<sub>0</sub>), unity-gain bandwidth (f<sub>t</sub>), phase margin (PM), and slew rates (SR<sup>+</sup> and SR<sup>-</sup>) of the op amp you used.
  - (b) Draw the magnitude/phase Bode plots of the filter by PSpice AC-sweep simulation.
  - (c) Discuss the difference of the plots in 1(b) and 2(b).
- 3. To verify 2(b), assume that  $V_{in}(t) = V_{CM} + V_P \times \sin(2\pi f_{in}t)$ , where  $V_{CM} = 1.65V$ .
  - (a) Let  $V_P=0.01V$ , please use PSpice time-domain simulation to measure the swing of  $V_{out}(t)$  when  $f_{in}=10Hz$ , 1KHz, 100KHz and 100MHz, respectively. Check if the results match the magnitude Bode plots in 2(b).
  - (b) If  $V_P$  is changed to 0.02V, repeat 3(a) and discuss the difference.

#### Notes

- When verifying the filter circuit by PSpice, you MUST use an op amp which meets ALL specifications listed in HW2.
- If your original op amp in HW2 doesn't meet ALL of the specifications, you can re-design a two-stage op amp. Or, you can use the following op amp to finish HW3.



• Finishing HW3 with an op amp designed by yourself will get a better grade.

# Notes (Cont.)

#### Hints

- According to page 38 of ch13's lecture slides, non-idealities of OP<sub>1</sub> might affect the frequency response of the filter.
- Maximum slope of a signal  $V_P \times sin(2\pi f_{in}t)$  is  $2\pi f_{in} \times V_P$ .
- Your report should include
  - Hand-calculation progress
    - Derivation procedure in 1(a)
    - > Brief drawing of magnitude/phase Bode plots in 1(b)
  - PSpice circuit schematics
    - Schematic of AC-sweep simulation in 2(b)
    - Schematic of time-domain simulation in 3(a)
  - PSpice verification results
    - Magnitude/phase Bode plots of filter in 2(b)
    - > Time-domain waveforms of V<sub>out</sub> in 3(a) and 3(b)
  - Discussion in 2(c) and 3(b)
- If you have re-designed a new op amp, your report should also include
  - Hand-calculation design procedure of the new op amp
  - Diagrams for verifying  $A_0$ ,  $f_t$ , PM, SR<sup>+</sup>, and SR<sup>-</sup> of the new op amp

### Notes (Cont.)

- When verifying your hand calculation by PSpice
  - ◆ 軟體安裝方式與使用介紹請參考Homework1的PSpice Tutorial
  - Correct the value of LAMBDA for NMOS0P5 to 0.1 (the same as on pp. B-9 of Appendix B in Sedra's CD)
  - Use 4-terminal MOSFET models (NMOS0P5\_BODY and PMOS0P5\_BODY)
- Upload your report to MOODLE in Word format
  - ◆ Deadline: 23:59:59 on 2023/11/20 (Mon.) (不接受作業補交)
  - ◆ Filename example: HW3\_鄭聿程\_E2408XXXX\_v1.doc (如更新請用v2, v3, ...)
  - ◆ Word format請參考Homework1, Homework2的Notes
- Others
  - ◆ 請勿抄襲, 抄襲等同考試作弊, 將依校規處理
  - ◆ 完成此次作業加學期總成績之1% (bonus)
  - ◆ 作業若遇到問題,可於下列時段至奇美樓95304室與助教討論
    - ▶ 原定office hours:每週一17:00~18:00 and 每週五16:00~17:00
    - ▶ 新增時段: 2023/11/09(Thu.) and 2023/11/16(Thu.) 14:00~15:00
  - ◆ 請注意手算過程之掃描圖檔務必清晰並轉正以利助教判讀