Operational Amplifier (OPAMP)

- Analog ICs include
 - Operational amplifier
 - Filters
 - Analog-to-digital converter (ADC)
 - Digital-to-analog converter (DAC)
 - Analog modulator
 - Phase-locked loop
 - Power management
 - Others
- Basic building blocks of analog ICs
 - Single-stage amplifier
 - Differential pairs
 - Current mirrors
 - MOS switches
 - Others

Operational Amplifier (Cont.)

- OPAMP design
 - CMOS OPAMPs are adequate for VLSI implementation.
 - > Main stream
 - > Two-stage and folded-cascode OPAMPs will be introduced.
 - Bipolar OPAMPs
 - > Can achieve better performance than CMOS OPAMPs.
 - Less popular
 - > 741 OPAMP will be introduced.
 - BiCMOS OPAMPs
 - Combine the advantages of bipolar and CMOS devices.
 - Less popular
 - > First published by H. C. Lin in 1960's.

CMOS Operational Amplifier (OPAMP)

Two-stage

I guess, it is for 70% applications.

• Folded-cascode

I guess, it is for 20% applications.

• Others

Stability and Compensation of OPAMP

Operational amplifier with negative feedback

Stability and Compensation of OPAMP (Cont.)

- For stable system, the real part of all poles must be negative.
 - Gain margin = $20\log |\beta A(j\omega_{180})|$
 - \bullet Unity-gain frequency ω_t
 - Phase Margin = $\measuredangle \beta A(j\omega_t) + 180^\circ$
 - At least 45° ~ 60° (or larger) margin is preferred.

This will also give a desirable (i.e., small or no ringing) step response for the closed-loop amplifier.

CMOS Amplifier with Resistive Load

- For high gain
 - High $I_D R_o$

> High $I_D R_o$ means large voltage drop on R_o

Large power supply

- ♦ High R_o reduces speed
- ♦ Use active loads to overcome the above problems.

Resistance of Active Load

• Small signal model of NMOS

Small signal model of diode-connected NMOS

CMOS Amplifier with Active Load

• The effect of process variations on quiescent point V_{OUT} Nominal design: $\left(\frac{W}{L}\right)_1 = \left(\frac{W}{L}\right)_2 = \left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_4 = \left(\frac{W}{L}\right)_5 = 1$ Assumption: $\left(\frac{W}{L}\right)_1 = \left(\frac{W}{L}\right)_2 = \left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_4 = 1$, $\left(\frac{W}{L}\right)_5 = 1 \pm 10\%$ Due to process variations

 \rightarrow V_{OUT} is determined by the actual values of M₁ ~ M₅

Single-Ended Amplifier with Active Load

 $v_{IN} = V_{IN} + C \sin \omega t$

where

- $v_{IN} = V_{IN} + C \sin \omega t$
- $v_{OUT} = V_{OUT} + AC\sin\omega t$

$$v_{OUT} = V_{OUT} + AC \sin \omega t$$

$$A = \frac{v_{out}}{v_{in}} = -g_{mn}(r_{dsp} \parallel r_{dsn}) \qquad \text{where } A = \frac{v_{out}}{v_{in}} = -g_{mp}(r_{dsp} \parallel r_{dsn})$$

 \rightarrow Quiescent point V_{OUT} is hard to be determined with active load

Single-Ended Amplifier with Diode-Connected Load

- Input and load transistor types
 - Different type

$$\begin{split} v_{IN} &= V_{IN} + C \sin \omega t \\ v_{OUT} &= V_{OUT} + AC \sin \omega t \\ A &= \frac{v_{out}}{v_{in}} = -g_{mn} \left(r_{dsp} \parallel r_{dsn} \parallel \frac{1}{g_{mp}} \right) \\ &= -\frac{g_{mn}}{g_{mp}} \left(\text{gain with small } \sqrt{\frac{\mu_n}{\mu_p}} \text{ variation} \right) \end{split}$$

♦ Same type

CMOS Amplifier with Active Load

With external bias

• Why not?

 \rightarrow Quiescent point of V_o⁺ & V_o⁻ can't be determined due to process variations

CMOS Amplifier with Active Load (Cont.)

- Self-biased active load: quiescent V_o less sensitive to $M_1 \sim M_4$ variations
- Performs differential gain and differential to single-ended $g_{m,M1}, g_{m,M2}, g_{m,M3}, g_{m,M4} \gg \frac{1}{r_{ds}}; r_{out} \approx r_{ds2} \parallel r_{ds4}$
- Differential gain A_{dm} ($v_{i1} = -v_{i2} = \frac{1}{2}v_{in}$) $A_{dm} \approx g_{m1}(r_{ds2} \parallel r_{ds4})$ at node $B = A_{dmB}$ Model of A_{dm}/A_{cm} Node A: $A_{dmA} \approx -\frac{1}{2}g_{m1} \cdot \frac{1}{g_{m2}}$ V_{DD} Node B: $A_{dmB} \approx \left(-\frac{1}{2}g_{m2} - A_{dmA} \cdot g_{m4}\right) \cdot \left(r_{ds2} \parallel r_{ds4}\right)$ $M_3 M_4$ Common-mode gain $A_{cm}(v_{i1} = v_{i2} = v_1)$ $\frac{1}{g_{m3}} \parallel r_{ds1} \parallel r_{ds3}$ $v_0 = v_A$ $v_{A} = \frac{1}{2} \frac{v_{1}}{r_{ds0}} \left(\frac{1}{g_{m2}} \parallel r_{ds1} \parallel r_{ds3} \right)$ $A_{cm} \approx \frac{1}{2} \frac{1}{r_{ds0}} \left(\frac{1}{g_{m3}} \parallel r_{ds1} \parallel r_{ds3} \right) \approx \frac{1}{2g_{m3}r_{ds0}}$ V_{i1} CMRR(Common-Mode Rejection Ratio) V_{bias}- $CMRR = \frac{A_{dm}}{A_{sm}} \approx 2g_{m1}(r_{ds2} \parallel r_{ds4})g_{m3}r_{ds0}$ GND

- Biasing circuits that provide stable transconductances
 - Transistor transconductances are matched to the conductance of a resistor. To a first-order effect, the transistor transconductances are independent of process as well as power-supply voltage and temperature variations (PVT variations).
 - ♦ Q₁₄ (Q₁₂) causes voltage drop between a and c _____
 (b and d) to minimize channel length modulation _____
 - Q₁₂ is diode-connected to provide a bias voltage to Q₁₄
 - ♦ Example

$$\left(\frac{\mathbf{w}}{\mathbf{L}}\right)_{10} = \left(\frac{\mathbf{w}}{\mathbf{L}}\right)_{11} = \left(\frac{\mathbf{w}}{\mathbf{L}}\right)_{12} = \left(\frac{\mathbf{w}}{\mathbf{L}}\right)_{13} = \left(\frac{\mathbf{w}}{\mathbf{L}}\right)_{14}$$

Unity current mirror

 V_{DD}

Q₁₀

_Q₁₄

 Q_{15}

 R_B

Bias loop

25

25

Q₁₁

 Q_{12}

Q₁₃

25

25

25

Current

mirror

- $\begin{cases} V_{ov13} = V_{ov15} + I_{D15}R_B & \text{bottom current mirror (widlar)} \\ I_{D10} = I_{D11} \text{ i.e. } I_{D13} = I_{D15} & \text{top current mirror (linear)} \\ g_{m13} = \frac{2I_D}{V_{ov13}} \\ \bullet \text{ Simple derivation} & 2\left[1 \sqrt{\frac{(W/L)_{13}}{(W/L)_{15}}}\right] \\ \to g_{m13} = 2\left(\frac{V_{ov13} V_{ov15}}{R_B}\right) \times \frac{1}{V_{ov13}} = \frac{2\left[1 \sqrt{\frac{(W/L)_{13}}{(W/L)_{15}}}\right]}{R_B} \end{cases}$
- g_{m13} is determined by geometric ratios only, independent of process parameters, temperature (PVT), or any other parameters with large variability.

- For a special case, $\left(\frac{W}{L}\right)_{15} = 4\left(\frac{W}{L}\right)_{13} \rightarrow g_{m13} = \frac{1}{R_{P}}$
- Thus, not only is g_{m13} stabilized, but all other transistors transconductances are also stabilized since the ratios of transistor currents are mainly dependent on geometry.
- For all n-channel transistors

$$g_{mi} = \sqrt{\frac{(W/L)_i I_{Di}}{(W/L)_{13} I_{D13}}} \times g_{m13}$$

For all p-channel transistors

$$\int_{a_{m10}}^{l_{D10} = l_{D13}} g_{m10} = \sqrt{2\mu_p C_{ox}(W/L)_{10} l_{D10}} g_{m13} = \sqrt{2\mu_n C_{ox}(W/L)_{13} l_{D13}} \Rightarrow g_{m10} = \sqrt{\frac{\mu_p (W/L)_{10}}{\mu_n (W/L)_{13}}} \times g_{m13}$$

Similarly, $g_{mi} = \sqrt{\frac{\mu_p (W/L)_i I_{Di}}{\mu_n (W/L)_{13} I_{D13}}} \times g_{m13}$
(Larger variation due to extra $\sqrt{\mu_p / \mu_n}$ variation)

- P-type constant transconductance bias circuit with start-up circuit
 - Approximate current characteristics of the bias loop.

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

- Start-up circuit
 - Operational principle of start-up circuit
 - > All currents in the bias loop are zero, Q_{17} will be off.
 - > Q_{18} is always on, the gates of Q_{16} will be pulled high.
 - Q₁₆ will inject currents into the bias loop, which will start up the circuit.
 - > Once the loop starts up, Q_{17} will be on, pulling the gate of Q_{16} low, and thereby turning it off so it no longer affects the bias loop.
 - This circuit is only one example of a start-up loop, and there are many other variations.
 - > For example, sometimes Q_{18} , is replaced by an actual resistor.

Widlar Current Sources

REF

Q1

- For large current mirror ratio
- Bipolar $I_{REF} = 0.73mA, R_A = 5k\Omega$ $V_{BE1} - V_{BE2} = I_{C2}R_A$ $\Rightarrow V_T \ln \frac{I_{REF}}{I_{C2}} = I_{C2}R_A$ \Rightarrow Trial and error to determine I_{C2} $\Rightarrow I_{C2} = 19\mu A$

MOSFET

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

 I_{C2}

Q2

Wide-Swing Constant Transconductance Bias Circuit

• Wide-swing current mirrors + constant g_m bias circuit

Wide-Swing Constant Transconductance Bias Circuit (Cont.)

- Wide-swing :
 - > Minimize V_{DS} of bias transistors to V_{ov}
- Constant g_m : $g_m = 1/R_B$
- Minimization of finite output impedance effect :
 - > Use cascode bias
- Start-up
 - > Approximate current characteristics of the bias loop

> At point A, loop gain
$$\approx \frac{(W/L)_7}{(W/L)_8} \bullet \frac{(W/L)_2}{(W/L)_3} = 4$$

Uncompensated Two-Stage CMOS OPAMP

 P₁ & P₂ are dominant poles since R₀₁ and R₀₂ are normally large. The effects of other poles are usually negligible.

Uncompensated Two-Stage CMOS OPAMP (Cont.)

• For low frequency, $A(j\omega) = A(0) \approx A_0$ For high frequency, $A(j\omega) \approx -\frac{g_{m1}g_{m6}}{\omega^2 C_1 C_L}$ Hence, for high frequency, the amplifier inverts the input voltage. If feedback is used, then positive feedback occurs.

- Two dominant poles
 - Phase margin is not large enough
 - ◆ Use pole-splitting technique to solve this problem

Offset Voltage of Two-Stage CMOS OPAMPs

- Input voltage needs to restore the output to zero (ideal DC level)
- Two components
 - Systematic offset
 - Random offset
- To avoid systematic offset, design must follow the rule

$$\frac{(W/L)_{M3}}{(W/L)_{M5}} = \frac{(W/L)_{M4}}{(W/L)_{M5}} = \frac{1}{2} \frac{(W/L)_{M6}}{(W/L)_{M7}}$$

• To minimize random offset

- ◆ L₁=L₂, W₁=W₂, L₃=L₄, W₃=W₄, L₃=L₆ and L₅=L₇ to minimize the offsets of channel length and channel width mismatch
- Large L and W such that $\Delta L/L$ and $\Delta W/W$ can be ignored

Input Common-Mode Range and Output Swing of Two-Stage CMOS OPAMP

- Input common-mode range, V_{ICM}
 - Minimum V_{ICM}
 - Keep M_1 and M_2 in saturation $\rightarrow V_{dg1,2} < |V_{tp}|$
 - ▶ Hence, $V_{ICM} \ge V_{tn} + V_{OV3} |V_{tp}|$, where V_{ov} is overdrive voltage
 - - Maximum V_{ICM}
 Keep M₅ in saturation, V_{ds5} > V_{ov5}
 - Hence, $V_{ICM} \le V_{DD} |V_{OV5}| |V_{tp}| |V_{OV1}|$ \triangleright

$$\Rightarrow V_{OV3} + V_{tn} - |V_{tp}| \le V_{ICM} \le V_{DD} - |V_{tp}| - |V_{OV1}| - |V_{OV5}|$$

Output swing, V_{Ω}

Keep M₆ and M₇ in saturation

$$V_{\rm OV6} \leq V_o \leq V_{\rm DD} - |V_{\rm OV7}|$$

Miller Effect

- Resistor $V \stackrel{\frown}{=} R \qquad I = \frac{V}{R}$
- Miller effect on resistor

- Capacitor $\bigvee \circ \neg \downarrow c$ Q = CV
 - Miller effect on capacitor

- $Q = C \cdot \Delta V = C(1 + A)V$
 - $C_{eff} = (1 + A)C$

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Pole and Zero

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Pole-Splitting of Two-Stage CMOS OPAMP (Cont.)

- Unity-gain frequency $f_t(or f_u) = |A_0| \frac{\omega_{P1}}{2\pi} = \frac{1}{2\pi} \frac{g_{m1}}{C_c}$
- To achieve an uniform -20dB/dec gain rolloff down to 0dB, the following two conditions must be satisfied
- 1. $f_t < f_{p2} \Longrightarrow \frac{g_{m1}}{C_c} < \frac{g_{m6}}{C_t}$ 20log|A| (dB) $20\log|A_v|$ 2. $f_t < f_z \implies g_{m1} < g_{m6}$ • At unity-gain frequency f_t (or f_{11}) $f_{\rm P1}$ $t_{P2} t_Z$ f (log scale) $\Phi_{\text{total}} = \tan^{-1}\left(\frac{f_{\text{t}}}{f_{\text{n}1}}\right) + \tan^{-1}\left(\frac{f_{\text{t}}}{f_{\text{n}2}}\right) + \tan^{-1}\left(\frac{f_{\text{t}}}{f_{\text{r}}}\right)$ where $\tan^{-1}\left(\frac{f_t}{f_{n1}}\right) \cong 90^\circ$ f (log scale) Phase margin = $180^{\circ} - \Phi_{total}$ $=90^{\circ} - \tan^{-1}\left(\frac{f_t}{f_{r_2}}\right) - \tan^{-1}\left(\frac{f_t}{f_r}\right)$ Phase margin

Right-Plane Zero

Causes slower gain drop but quicker phase drop
 Usually moved away if phase margin is not large enough

Right-Plane Zero (Cont.)

• The zero is due to the existence of two path through which the signal can propagate from node A to node B

1. through C_C

2. through the controlled source $g_{m6}V_A$

- To eliminate zero ω_z
 - 1. Method-1

2. Method-2

Elimination of Right-Plane Zero

• Method-1: Use unity-gain buffer \rightarrow Zero moves to infinity

Elimination of Right-Plane Zero (Cont.)

- Method-2: Using R instead of buffer
 - Elimination of zero \rightarrow Let $R_z = \frac{1}{g_{m6}}$
 - Pole-zero cancellation \rightarrow Let $\omega_{Z} = \omega_{P2}$

郭泰豪, Electronics(3), 2023

- $\omega_t = -\omega_2 = \beta A_0 \omega_1$
- Step response (with fixed ω_2)

 - ♦ n=3
 - ♦ n=4

Introduction of Slew Rate (SR)

• Definition: Maximum change rate of voltage

- SR depends on system driving currents and capacitive loads
- SR should be considered at all nodes in circuit, for example:

SR Effect on Sinusoidal Response

• Voltage change rate without SR limitation

$$v_i = v_o = \hat{V}_i \sin \omega t \implies \frac{dv_o}{dt} = \omega \hat{V}_i \cos \omega t \implies \frac{dv_o}{dt}\Big|_{max} = \omega \hat{V}_i \cos 0 = \omega \hat{V}_i$$

• Full-power bandwidth (f_M)

$$SR = \omega_M V_{o_max} \Longrightarrow f_M = \frac{SR}{2\pi V_{o_max}}$$

- V_{o_max} : rated opamp output voltage ω_M : maximum input frequency without distortion
- SR effect on sine waves
 - Small amplitude, low freq.

Small amplitude, high freq.

Large amplitude, low freq.
 V V_o without SR limitation
 V_o with SR limitation

SR limitation depends on amplitude and frequency

SR Effect on Step Response of a One-Pole System

- Step response of a one-pole system
 - Ideal response: Exponential output v_{O,Ideal}(t)

$$\mathbf{v}_{\mathrm{O,Ideal}}(t) = \mathbf{V}_{i}\left(1 - e^{-t/\tau}\right) \Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t}\left(\mathbf{v}_{\mathrm{O,Ideal}}(t)\right) = \frac{\mathbf{V}_{i}}{\tau} e^{-t/\tau}$$

 \blacklozenge Without large enough system SR \rightarrow Slewing happens

When SR $< \frac{d}{dt} (v_{O,Ideal}(t)) \Rightarrow \frac{d}{dt} (v_{O,Real}(t)) = SR$ (As 0~t₁ in the waveform below)

• Example: RC filter with current-limited voltage source

SR Analysis of Two-Stage OPAMP

- V_o rising process
 - ♦ Large positive input at V_{i+}
 - ♦ M₁ turned off
 - ◆ I₅ flows through C_c
 - ◆ Driving capability of I₆ is usually large
 → SR not limited by I₆
 - SR = I_5 / C_c
- V_o falling process
 - ♦ Large positive input at V_i-
 - M₂ turned off
 - ◆ I₅ flow through C_c
 - > I_7 large enough: SR= I_5 / C_c
 - > I_7 not large enough: SR= $I_7 / (C_c + C_L)$
- SR when I₇ is large enough

$$g_{m1} = \sqrt{2\mu_n C_{ox} \frac{W_{M1}}{L_{M1}} \frac{I_5}{2}}, \quad \omega_t = \frac{g_{m1}}{C_C} \Longrightarrow SR = \frac{dv_o(t)}{dt} \bigg|_{max} = \frac{I_5}{C_C} = \omega_t \sqrt{\frac{I_5 L_{M1}}{\mu_n C_{ox} W_{M1}}} = (V_{GS1} - V_t) \omega_t$$

Example - Negative Feedback Amplifier

- R Slew rate V_{DD} Assume the output driving M_3 current is large enough $SR = \left| \frac{dV_{out}}{dt} \right| = \left| -\frac{1}{C_c} \frac{dQ_c}{dt} \right| = \frac{I_5}{C_c}$ I₅ V_{out} For $\begin{cases} \omega_{t} = \frac{g_{m1}}{C_{C}} \Rightarrow C_{C} = \frac{g_{m1}}{\omega_{t}} \\ g_{m1} = \sqrt{2\mu_{n}C_{OX}\left(\frac{W}{L}\right)_{M1}\frac{I_{5}}{2}} \end{cases} \quad 0^{-1} \end{cases}$ V_{in} R •–••• V₁ M₁ M V_{CM} $\Rightarrow SR = \frac{I_5 \omega_t}{g_{m1}} = \omega_t \left| \frac{I_5}{\mu_n C_{OX} \left(\frac{W}{L} \right)_{M1}} \right|$ R R Slew rate can be increased by Vout C_{L} Increasing the unity-gain bandwidth Increasing bias current of input stage V_{CM}
 - Decreasing the W/L ratio of the input transistors

Power-Supply Rejection Ratio (PSRR)

- Mixed-signal circuits combine analog and digital circuits
 - \Rightarrow Switching activity in digital portion results in supply ripple
 - Add large capacitors between supply rails and ground \Rightarrow not practical in IC design
 - High-PŞRR analog circuitş

[Ref.] P. R. Gray, P. J. Hurst, A. H. Lewis, and R. G. Meyer, *Analysis and Design of* Analog Integrated Circuits, 5th ed., New York: John Wiley & Sons, 2009. pp. 430-432

Design Trade-offs

- To increase the differential gain, CMRR, and PSRR for a two-stage op amp
 - Enlarge the length L for the channel of each MOSFET
 - Lower the $|V_{OV}|$ at which each MOSFET is operated

$$A_{O} = g_{m}r_{ds} \propto \sqrt{I} \cdot \frac{1}{\lambda I} = \frac{1}{\lambda \sqrt{I}} \propto \frac{L}{\sqrt{I}}, \text{ where } \lambda \propto \frac{1}{L} \text{ (roughly)}$$
$$\omega_{t} = \frac{g_{m}}{C} \propto \frac{\sqrt{I}}{C} \propto \sqrt{I}$$

 The transition frequency of the MOSFETs can be increased by using a shorter channel and/or a larger |V_{OV}|

$$f_{t} = \frac{g_{m}}{2\pi(C_{gs} + C_{gd})} = \frac{2 \cdot \frac{1}{2} \mu C_{OX} \frac{W}{L} V_{OV}^{2} / V_{OV}}{2\pi(\frac{2}{3} WLC_{OX})} \approx \frac{1.5 \cdot \mu \cdot |V_{OV}|}{2\pi L^{2}}; \text{ where } \begin{cases} \mu: \text{ carrier mobility} \\ V_{OV}: \text{ overdrive voltage} \\ L: \text{ channel length} \end{cases}$$
$$g_{m} = \frac{2I}{V_{OV}}, C_{gs} \approx \frac{2}{3} WLC_{OX} \text{ and } C_{gs} \gg C_{gd}$$

- In conclusion, it's a trade-off between low-frequency performance parameters and high-frequency ones
 - → For analog circuits in submicron process operated at 1V~1.5V supplies, 0.1V~0.3V of |V_{OV}| is typically used, and the typical channel lengths are usually at least 1.5~2 times the L_{min}

Cascade and Cascode CMOS OPAMPs

- Cascade two-stage CMOS OPAMP
 - Most popular and works well with low capacitive load
 - Problems
 - Limited slew rate due to large C_c
 - > Limited bandwidth with large C_{L}
- If 1. low output resistance is not required,
 - 2. high open-loop gain is required, and
 - 3. large phase margin can be maintained with large C_L , then cascode configuration can provide attractive solutions for the above problems.
- Cascode CMOS OPAMP
 - Gain of two-stage OPAMP can be increased by adding gain stage in cascade.
 - \Rightarrow phase shift is increased (i.e. PM \downarrow)
 - Cascode configurations can be used to increase gain in the existing stage.

Cascode CMOS OPAMP

Output resistance(Ro) is increased

 $R_{04} \approx (g_{m4}r_{ds4})r_{ds2}$ $R_{06} \approx (g_{m6}r_{ds6})r_{ds8}$ $R_0 = R_{04} \parallel R_{06}$

- Voltage gain $A = -g_{m1}R_0$ \Rightarrow Gain is increased.
- Common-mode range is lowered and more transistors are stacked between the two power supplies.
 - \Rightarrow Folded-cascode has larger common-mode range
- Cascode and folded-cascode OPAMPs are also named as "transconductance OPAMP" or "operational transconductance amplifier (OTA)"

 V_{DD} Q_5 R_{O6} $\mathsf{R}_{\mathsf{O}^4}$ Q_3 V_{bias} V_{in+}-

Folded-Cascode CMOS OPAMP

• $Q_3 \sim Q_8$ are folded and connected to GND

Folded-Cascode CMOS OPAMP (Cont.)

Q₃, Q₄, Q₉ ~ Q₁₁ form externally-biased current sources
 Q₅ ~ Q₈ form self-biased current sources

Folded-Cascode CMOS OPAMP

Input common-mode range

Common-mode range is increased (compared with cascode OPAMPs). However, it is small compared with 2-stage OPAMPs

 $V_{OV11} + V_{OV1} + V_{tn} \le V_{ICM} \le V_{DD} - |V_{OV9}| + V_{tn}$

- Output voltage swing
 - $V_{OV7} + V_{OV5} + V_{tn} \le V_o \le V_{DD} |V_{OV10}| |V_{OV4}|$
- Voltage gain $A = G_m R_0 = g_{m1} R_0$ $R_0 = R_{04} \parallel R_{06}$ $= [g_{m4} r_{ds4} (r_{ds2} \parallel r_{ds10})] \parallel [g_{m6} r_{ds6} r_{ds8}]$

Folded-Cascode CMOS OPAMP

- The only high-impedance point is the output node. \Rightarrow Dominant pole is generated at the output node
- ♦ The resistance of all other nodes at level of 1/gm⇒ Nondominant poles occur at all other nodes.
 - The 2nd pole is usually at the source of M_3 and M_4 .
- Nondominant poles are usually at frequencies beyond $\omega_t \Rightarrow \text{If } C_L \text{ is increased, then phase margin is increased.} \Rightarrow \text{If } C_L \text{ is not large enough, it can be augmented.}$
- No frequency compensation is required
 wide bandwidth

• If $I_B \ge I$, slew rate $SR = I/C_L = \omega_t V_{OV1}$ (: $g_{m1} = \frac{I}{V_{OV1}}$, $f_t = \frac{g_{m1}}{2\pi C_L}$)

Folded-Cascode CMOS OPAMP(Cont.)

- Folded-cascode OPAMPs have high open-loop output resistance It has been given the name operational transconductance amplifier (OTA)
- Its high output resistance (in the order of g_mr_o²) is far from that for an ideal OPAMP (which has zero output resistance)
- To alleviate this concern somewhat, let us find the closed-loop output resistance R_{of} of a unity-gain follower ($\beta = 1$) formed by connecting the output terminal back to the negative input terminal

$$R_{of} = \frac{R_o}{1 + A\beta} = \frac{R_o}{1 + A} \approx \frac{R_o}{A} \implies \frac{R_{of}}{R_{of}} \approx \frac{1}{G_m}$$

A general result applying to any OTA with 100% voltage feedback. For folded-cascode OPAMPs, $G_m \approx g_{m1} \Rightarrow R_{of} \approx \frac{1}{m}$

• g_{m1} is in the order of 1mA/V, and R_{of} will be of the order 1k Ω Although this is not very small, it's reasonable in view of the simplicity of the OPAMP circuit as well as the fact that this type of

Wide-Swing Current Mirror

Increased output voltage range

Wide-Swing Current Mirror (Cont.)

• A common choice, n = 1, $V_{out} > 2V_{OV}$

Folded-Cascode with Wide-Swing Current Mirror

Folded-Cascode with Rail-to-Rail Input Operation

• Increased input common-mode range, rail-to-rail or even larger

BiCMOS Folded-Cascode OPAMP

• When it is necessary to drive a resistive load, a low resistance output buffer is needed

BiCMOS Folded-Cascode OPAMP (Cont.)

 The largest nondominant pole is usually generated at the emitter nodes of Q_{1C} and Q_{2C}

$$\omega_{\text{p2}} \approx \frac{1}{R_{1\text{C}}C_{\text{p1}}} \approx \frac{g_{\text{m1C}}}{C_{\text{p1}}}, \text{where } R_{1\text{C}} \approx R_{\text{elc}} \parallel r_{O(\text{Q16})} \parallel r_{O(\text{Q1})} \approx R_{\text{elc}} = \frac{1}{g_{\text{mlc}}}$$

- The transconductance of BJT can be much larger than that of CMOS
 - $\Rightarrow \omega_{p2}$ can be increased
 - $\Rightarrow \omega_{\rm u} \, {\rm can} \, {\rm be}$ increased while enough phase margin is maintained
 - ⇒ Wider bandwidth than that of CMOS foldedcascode OPAMP

Fully Differential CMOS Switched-Capacitor Circuit

- Power supply rejection is high
- Larger chip area compared with single-ended output
- Output swing is doubled
 - Dynamic range (DR) is 6dB greater than single-ended OPAMPs
- The effect of clock feedthrough noise is minimized by the differential configuration since it will appear as a common-mode signal.

Fully Differential OPAMPs

- Fully differential signal paths
 - Differential input and differential output
 - Used in most modern high-performance analog ICs
- Help reject noise from the substrate as well as from switches turning off in switched-capacitor applications.
 - Ideally, noise affects both signal paths identically and will then be rejected since only the difference between signals is important.
 - In reality, this rejection only partially occurs since the mechanisms introducing the noise are usually nonlinear with respect to voltage levels. For example, substrate noise will usually feed in through junction capacitances, which are nonlinear with voltage.
 - Certainly, the noise rejection of a fully differential design will be much better than that for a single-ended output design. (>20dB can be expected)
- Common-mode feedback (CMFB) circuit must be added to establish the commonmode (i.e. average) output voltage.
- Reduced slew rate in one direction (compared to single-ended design)
 - Maximum current for slewing is often limited by fixed-bias currents in the output stages.

Fully Differential Folded-Cascode OPAMP

Fully Differential Folded-Cascode OPAMP (Cont.)

- CMFB circuit forces the average of the two outputs to a predetermined value
- Maximum negative slew rate is limited by I_{D7} and I_{D9}
- Dominant pole : output node
 - 2nd pole : node at M₁ (or M₂) drain
 - \bullet n-channel input and p-channel for M₅ and M₆
 - > High transconductance
 - > High gain
 - \bullet p-channel input and n-channel for M₅ and M₆
 - Maximize 2nd pole frequency
 - > Unity-gain bandwidth can be maximized.

Common-Mode Feedback (CMFB) Circuits

- Force output common-mode voltage to a predetermined value
- CMFB is often the most difficult part of the OPAMP to design.
- Two typical approaches
 - Continuous-time
 - Limited signal swing
 - Switched-capacitor
 - > Used in switched-capacitor circuits
 - Signal swings are not limited
 - Becomes a source of noise
 - Increases load capacitance
- By having as few nodes in the common-mode loop as is possible, compensation is simplified without having to severely limit the speed of the CMFB circuit. For this reason, the CMFB circuit is usually used to control current sources in the output stage of the OPAMP.

CMFB Circuits

• A continuous-time CMFB circuit

- The circuit can not operate correctly if the OPAMP output voltage is so large that transistors in the differential pairs turn off.
- When common-mode voltage is zero

$$I_{D2} = \frac{I_B}{2} + \Delta I, \quad I_{D3} = \frac{I_B}{2} - \Delta I, \quad I_{D5} = I_B$$

CMFB Circuits (Cont.)

- Operational principle of CMFB circuits
 - For example, when a positive common-mode signal is present

 \rightarrow $I_{\rm M2}$ and $I_{\rm M3}$ increase \rightarrow $I_{\rm M5}$ increase \rightarrow $V_{\rm cntrl}$ increase

- V_{cntrl} sets the current levels in the n-channel current sources at the output of the OPAMP, thus, bringing the common-mode voltage back to V_{CM}
- If the common-mode loop gain is large enough, and the differential signals are not so large as to cause transistors in the differential pairs to turn off, the common-mode output voltage will be kept very close to V_{CM}.

CMFB Circuits (Cont.)

• A switched-capacitor circuit

- Using larger capacitance values overloads the OPAMP
- Reducing the capacitors too much caused common-mode offset voltages due to charge injection of the switches.

$$\frac{\mathbf{V_{out}}^{+} + \mathbf{V_{out}}^{-}}{2} - \mathbf{V_{cntr1}} \approx \mathbf{V_{CM}} - \mathbf{V_{bias}}$$

Common-Mode Voltage of OPAMP

• Take inverting amplifier (with ac gain=1) for example

- Single-ended amplifier
 - Input common-mode voltage at $V^- = V_{CM}$ (Virtually shorted to V^+)
 - Output common-mode voltage at $V_{O(CM)} = V_{CM} (V_{I(CM)} V_{CM})$
- Fully-differential amplifier
 - Input common-mode voltage at $V^+ = V^- = \frac{1}{2}(V_{I(CM)} + V_{O(CM)})$
 - Output common-mode voltage at $V_{O(CM)}$ > Set by CMFB

Appendix

- 741 OPAMP
- Modern techniques for the BJT OPAMP
 - ♦ Rail-to-rail input common-mode OPAMP
 - ♦ Bias design
 - Input stage design
 - Common-mode feedback (CMF)
 - Output stage with near rail-to-rail output swing
- Full version of the output stage
 - Buffer/driver stage
 - Output-stage current sensing
 - Feedback for the current of inactive transistor
 - Minimum current in the inactive output transistor

741 OPAMP

- Uses a large number of transistors but relatively few resistors and only one capacitor
 - ◆ R and C occupy large silicon area .
 - C need more fabrication steps
 - ♦ High-quality R&C are not easy to fabricate.
- Circuit Diagram in the next page.

741 OPAMP (Cont.)

Basic Parts of 741 OPAMP

- Bias circuit
 - ◆ I_{ref} is generated by Q₁₁,Q₁₂,Q₁₀,R₄,Q₈,Q₉,Q₁₃
 - ♦ Double-collector PNP Q₁₃

Current mirror

$$\begin{array}{c} \downarrow I_X \\ \downarrow Q_x \\ \downarrow Q_y \\ \downarrow Q_y$$

Basic Parts of 741 OPAMP(Cont.)

- Short-circuit protection circuitry
 - ♦ R₆, R₇, Q₁₅, Q₂₁, Q₂₄, Q₂₂
- 741 OPAMP consists of 3 stages
 - Input differential stage
 - Single-ended high-gain stage
 - Output-buffering stage
- Input stage
 - ♦ Q₁~Q₇, R₁~R₃
 - Biased by $Q_8 \sim Q_{10}$ to provide high input impedance.
 - Q₃&Q₄ are lateral PNP (low β)
 Higher emitter-base junction breakdown than NPNs
 - Protect input transistors Q₁&Q₂ when they are accidentally shorted to supply voltages.
 - ♦ Q₅~Q₇, R₁~R₃ provide high-resistance load and single-ended output.

Basic Parts of 741 OPAMP(Cont.)

- Second stage
 - ♦ Q₁₆,Q₁₇,Q_{13B},R₈,R₉
 - \bullet Q₁₆ acts as an emitter follower, thus giving
 - > High input resistance
 - Low base current if R₉ is large, hence low loading of the first stage.
 - ◆ Q₁₇: common emitter configuration
 - \bullet Q_{13B}: active load
 - ♦ C_c: Miller capacitor for pole-splitting compensation 30pF area occupied is about 13 times that of a standard NPN transistor.
- Output stage
 - Provide low output resistance
 - ♦ Class AB

DC Analysis of 741 OPAMP

 Device parameters Standard transistors NPN: $I_{S} = 10^{-14}$ A, $\beta = 200$, $V_{A} = 125$ V PNP: $I_{S} = 10^{-14} A$, $\beta = 50$, $V_{\Delta} = 50V$ Nonstandard transistors Q₁₃,Q₁₄,Q₂₀ 1. $Q_{13} = Q_{13A} + Q_{13B}$ Q_{13A} : $I_{SA} = 0.25 \times 10^{-14} \text{ A}$ Q_{13B} : $I_{SB} = 0.75 \times 10^{-14} \text{ A}$ 2. Q₁₄ & Q₂₀ $I_{s} = 3 \times 10^{-14} \text{ A}$ Reference bias current $I_{\text{REF}} \approx \frac{V_{\text{CC}} - V_{\text{EB12}} - V_{\text{BE11}} - (-V_{\text{EE}})}{V_{\text{CC}} - V_{\text{EB12}} - V_{\text{BE11}} - (-V_{\text{EE}})}$ R_{5} • For $V_{CC} = -V_{FF} = 15V$ $V_{BE11} = V_{BE12} \approx 0.7V$ \Rightarrow I_{RFF} \approx 0.73mA

Input Stage Bias

Widlar current sources

♦ Bipolar

$$V_{BE11} - V_{BE10} = I_{C10}R_4$$

$$\Rightarrow V_T \ln \frac{I_{REF}}{I_{C10}} = I_{C10}R_4$$

$$\Rightarrow \text{Trial and error to determine } I_{C10}$$

$$\Rightarrow I_{C10} = 19 \mu A$$

♦ MOSFET

Input Stage Bias(Cont.)

♦ Q₁~Q₄,Q₈,Q₉ form a negative feedback loop The feedback stabilize the value of I (i.e. I is kept unchanged and only controlled by I_{C10})

Input Stage Bias(Cont.)

• Active load

$$\mathbf{A}_{C_5} \approx \mathbf{I}_{C_6} \approx \mathbf{I}$$

$$I_{C_7} \approx I_{E_7} = \frac{2I}{\beta_N} + \frac{V_{BE_6} + IR_2}{R_3}$$

$$V_{BE_6} = V_T \ln \frac{I}{I_S} = 517mV$$

$$\Rightarrow I_{C_7} \approx 10.5\mu A$$

Gain stage with resistor load (Cont.)

Resistor Load

- > High I_cR_o
- > High I_cR_o means large voltage drop on R_o
- Large power supply
- ♦ High R_o reduces speed
- ♦ Use active loads to overcome the above problems

Gain Stage with Active Load

- Transistor can provide large resistance if properly biased.
 - ♦ Example $A = g_{m}(r_{01}/r_{02})$ $\approx g_{m}(\frac{1}{2}r_{0})$ $\propto \frac{1}{2}I_{C}r_{0}$ $\sqrt{V_{in}}$ V_{in}
 - ◆ I-V curve & load line

 Q_3

Input bias

Input bias

Input current

$$I_{B1} = I_{B2} = \frac{I}{\beta_N} = \frac{9.5 \,\mu A}{200} = 47.5 \,nA$$

$$\Rightarrow \text{ very small}$$

- Offset current and offset voltage are introduced in chapter 6
- Input common-mode range
 - In this range, the input stage remains in the linear active mode
 - This range is determined at the upper end by saturation of Q₁ and Q₂, and at the lower end by saturation of Q₃ and Q₄.

Second Stage Bias

•
$$I_{C13B} = 0.75 I_{C12} \approx 0.75 I_{REF} \approx 550 \mu A$$

 $I_{C17} \approx I_{C13B} = 550 \mu A$
 $V_{BE_{17}} = V_T \ln \frac{I_{C_{17}}}{I_S} = 618 \, mV$
 $I_{C_{16}} \approx I_{E_{16}} = I_{B_{17}} + \frac{I_{E_{17}}R_8 + V_{BE_7}}{R_9} \approx 16.2 \, \mu A$

Output Stage Bias

 \Rightarrow V_{BE18} \approx 588mV (This is close to the value assumed)

Output Stage Bias(Cont.)

$$I_{C_{19}} \approx I_{E_{19}} = I_{B_{18}} + I_{R_{10}} = 0.8 \mu A + \frac{V_{BE_{18}}}{R_{10}} \approx 15.5 \mu A$$
$$V_{BE_{19}} = V_T ln \frac{I_{C_{19}}}{I_S} = 530 \text{ mV}$$
$$V_{BE_{18}} + V_{BE_{19}} = 588 \text{ mV} + 530 \text{ mV} = 1.118 \text{ V}$$
$$V_T ln \frac{I_{C_{14}}}{I_{S_{14}}} + V_T ln \frac{I_{C_{20}}}{I_{S_{20}}} = 1.118 \text{ V}$$
$$V_T ln \frac{I_{C_{14}}}{I_{S_{14}}} I_{C_{20}} = 1.118 \text{ V}$$

$$\Box$$
 $I_{C14} = I_{C20} = 154 \text{uA}$

Small-Signal Analysis of 741 Input Stage

- Simplified ac schematic
 - For differential mode input, biases of Q_3 and Q_4 are at ac ground.

Transconductance

$$\frac{v_{id}}{2} = v_1 + v_3$$
$$v_1 g_{m1} (1 + \frac{1}{\beta_1}) = v_3 g_{m3} (1 + \frac{1}{\beta_3})$$

Small-Signal Analysis of 741 Input Stage(Cont.)

$$\Rightarrow \frac{v_{id}}{2} = v_3 \left[\frac{g_{m3} \left(1 + \frac{1}{\beta_3} \right)}{g_{m1} \left(1 + \frac{1}{\beta_1} \right)} + 1 \right]$$

since $|I_{c3}| = I_{c3}$, $g_{m1} = g_{m3}$, $\beta_1 = 200 >> 1$, $\beta_3 = 50 >> 1$

 $\Rightarrow v_{3} = \frac{v_{id}}{4} \dots (1)$ $i_{c3} = -\frac{g_{m3}v_{id}}{4}$ $i_{c4} = \frac{g_{m3}v_{id}}{4}$ $i_{out} = -i_{c4} + i_{c3} = -\frac{g_{m3}v_{id}}{2}$ $G_{m1} = -\frac{i_{out}}{v_{id}} = \frac{g_{m1}}{2} = \frac{I_{c1}}{2V_{T}} \approx \frac{1}{5.26k\Omega}$

Small-Signal Analysis of 741 Input Stage (Cont.)

Input Resistance R_{id}

From(1),
$$v_1 = v_3 = \frac{v_{id}}{4}$$

$$R_{id} = \frac{v_{id}}{i_i} = \frac{v_{id}}{(V_1/r_{\pi_1})} = 4r_{\pi_1} = 4(\beta_1 + 1)r_e = 2.1M\Omega$$

where $r_e = \frac{V_T}{I_C} = \frac{25mV}{9.5\mu A} = 2.63K\Omega = \frac{1}{g_m}$

Small-Signal Analysis of 741 Input Stage (Cont.)

Output resistance R₀₁-simplified circuit

◆ Refer to chapter 6

$$\begin{split} & R_{o4} = r_{o(Q4)} \{ 1 + g_{m4} (r_e / / r_{\pi 4}) \} \cong 10.5 M\Omega \\ & > R_{o6} = r_{o(Q6)} \{ 1 + g_{m6} (R_2 / / r_{\pi 6}) \} \cong 18.2 M\Omega \quad \text{where} \ \ r_o = V_A / I \\ & R_{o1} = R_{o4} / / R_{o6} \cong 6.7 M\Omega \end{split}$$

Two-port equivalent circuit of input stage

Small-Signal Analysis of the 741 Second Stage

Simplified circuit

• Input resistance R_{i2} • $R_{i17} = (\beta_{17}+1)(r_{e17}+R_8)$ • $R_{i2} = (\beta_{16}+1)(r_{e16}+(R_9//R_{i17})) \cong 4M\Omega$

Small-Signal Analysis of the 741 Second Stage (Cont.)

- Transconductance G_{m2}
 - Voltage gain of the emitter follower Q_{16} is nearly unity.

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Small-Signal Analysis of the 741 Second Stage (Cont.)

- Output Resistance
 - $R_{o2} = R_{o17} / / R_{o13B}$
 - $\bullet R_{o13B} = r_{o(Q13B)}$
 - $R_{o17} \cong r_{o(Q17)} [1 + gm_{17} (R_8 / / r_{\pi 17})]$
 - $\blacklozenge R_{o2} = R_{o17} //R_{o13B} \cong 787 k\Omega //90.9 k\Omega \cong 81 k\Omega$

741 Output Stage

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Small-Signal Analysis of the 741 Output Stage

• Simplified circuit for positive V_o , $V_{BE14} > V_{EB20}$

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Small-Signal Analysis of the 741 Output Stage(Cont.)

- Input resistance R_{i3}
 - For positive V_o with Q_{20} neglected (Q_{14} conducts more current)

$$\begin{aligned} R_{i14} &= r_{\pi 14} + (1 + \beta_{14}) R_L \\ R_{eq3}^+ &= r_{d18}^+ + r_{d19}^- + (r_{o(Q13A)}^- / / R_{i14}^-) \text{ where } r_{d18}^- + r_{d19}^- \text{ is very small.} \\ R_{i3}^+ &= r_{\pi 23}^- + (1 + \beta_{23}) R_{eq3}^+ \end{aligned}$$

• For negative V_o with Q_{14} neglected (Q_{20} conducts more current)

$$\begin{split} &\mathsf{R}_{i20} = \mathsf{r}_{\pi 20} + (1 + \beta_{20}) \mathsf{R}_{\mathsf{L}} \\ &\mathsf{R}_{eq3}^{-} = \mathsf{r}_{d18} + \mathsf{r}_{d19} + \mathsf{r}_{o(Q13A)} \text{ where } \mathsf{r}_{d18} + \mathsf{r}_{d19} \text{ is very small.} \\ &\mathsf{R}_{i3}^{-} = \mathsf{r}_{\pi 23} + (1 + \beta_{23}) (\mathsf{R}_{eq3}^{-} / / \mathsf{R}_{i20}) \end{split}$$

• Actual R_{i3} is between R_{i3}^+ and R_{i3}^-

Small-Signal Analysis of the 741 Output Stage(Cont.)

- Output Resistance R_{out}
 - ♦ For positive V_o with Q₂₀ neglected

$$R_{out} \approx R_{o14}$$

$$R_{eq4} = r_{o(Q13A)} / / \left[r_{d19} + r_{d18} + r_{e23} + \frac{R_{o2}}{1 + \beta_{23}} \right]$$

$$R_{o14} = r_{e14} + \frac{R_{eq4}}{1 + \beta_{14}}$$

• For negative V_o with Q_{14} neglected

$$R_{out}^{-} \approx R_{O20}$$

$$R_{O23} = r_{e23} + \frac{R_{O2}}{1 + \beta_{23}}$$

$$R_{O20} = r_{e20} + \frac{R_{eq3} / / R_{O23}}{1 + \beta_{20}}$$

♦ Actual R_{out} is between R⁺_{out} and R⁻_{out}

Small-Signal Analysis of the 741 Output Stage(Cont.)

• Small-signal equivalent circuit model

Gain and Frequency Response of the 7410PAMP

Equivalent circuit of the 741 OPAMP

Gain and Frequency Response of 741 OPAMP (Cont.)

- Frequency Response
 - ♦ 741 is an internally compensated OPAMP
 - Miller Compensation

$$\begin{cases} C_i = C_C (1 + |A_2|) - --Miller \ theorem \\ A_2 = -G_{m_2} R_{O_2} (\frac{R_{i_3}}{R_{O_2} + R_{i_3}}) = -526.5 \times 0.978 \approx -515 \\ \implies C_i \approx 30 \, \text{pF} \cdot (1 + |-515|) = 15480 \, \text{pF} \end{cases}$$

Gain and Frequency Response of 741 OPAMP (Cont.)

- ♦ Neglecting the parasitic capacitance at the base of Q₁₆
- Total resistance at this node $R_t = (R_{O1} / / R_{i2})$
 - \Rightarrow Dominant pole $f_p = \frac{1}{2\pi R_r C_i} \approx 4.1 Hz$
- ♦ Bode plot (Neglecting nondominant poles)

Gain and Frequency Response of 741 OPAMP (Cont.)

- Simplified model
 - ♦ Model the 2nd stage as an integrator

Slew Rate

- Large signal behavior
- Output voltage slew limitation

Modern Techniques for the BJT OPAMP

- Reasons for single-supply operation with much lower V_{CC}
 - Meet modern small-feature-size fabrication technologies
 - Be compatible with other low-power-supply systems
 - Minimize the power dissipation, P = I_{VDD} V_{DD}, especially for battery-operated systems

 For a low-voltage single-supply system, rail-to-rail input common-mode range may be required because of its inherent low supply voltages

Rail-to-Rail Input Common-Mode OPAMP

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Bias Design

- \blacklozenge I is independent of V_{CC}
- ◆ I is directly PTAT, proportional to absolute temperature Mirrored transistors' $g_m = \frac{I}{V_T}$ are independent of temperature

Input Stage Design

Input Stage Design (Cont.)

- Assume that $V_{R_c} = 0.3V$
 - For pnp differential-pair (previous page)

$$-0.3 \le V_{ICM} \le V_{CC} - 0.8$$

- ♦ For npn differential-pair (right figure) $0.8 \le V_{ICM} \le V_{CC} + 0.3$
- Connecting the two circuits in parallel

♦ A rail-to-rail
$$V_{ICM}$$
 range
 $-0.3 \le V_{ICM} \le V_{CC} + 0.3$

♦ For the overlap region $0.8 \le V_{ICM} \le V_{CC} - 0.8$, both pnp and npn circuits are active

 \rightarrow higher effective transconductance (X2) \rightarrow higher gain

• Adding a folded-cascode stage can also increase gain

Common-Mode Feedback (CMF)

Without CMF

Two mismatched BJT-pairs, i.e. $(Q_9 - Q_{10})$ and $(Q_7 - Q_8)$

- \rightarrow An increment ΔI will be multiplied by large R_{out}
- \rightarrow Large changes at v_{o1} & v_{o2}
- \rightarrow One set of BJT-pair saturates
- With CMF
 - It ensures $Q_{7,8}$ remain active
 - V_{CM} is regulated

if
$$V_{CM}\uparrow \Rightarrow V_B\uparrow \Rightarrow I_{7,8}\uparrow \Rightarrow V_{CM}\downarrow$$

CMF Circuit Configuration

$$V_{CM} = (V_{o1} + V_{o2})/2$$

$$V_{o1} = V_{CM} + \frac{V_d}{2}$$

$$V_{o2} = V_{CM} - \frac{V_d}{2}$$

$$Q_{11} \sim Q_{14} \text{ act as emitter followers}$$

$$V_E = V_{CM} + V_{EB11,12} - V_{EB13,14}$$

$$\approx V_{CM}$$

$$\Rightarrow V_B = V_E + V_D = V_{CM} + 0.4$$

$$V_D : \text{Voltage drop of Schottky barrier diode}$$

Output Stage with Near Rail-to-Rail Output Swing

 Classical emitter-follower-based class AB output stage would consume too much supply voltage

 \rightarrow Smaller output-swing range

• Utilizing a pair of common-emitter transistors

 $\rightarrow 0.1 \forall \approx V_{CENsat} \leq v_O \leq V_{CC} - V_{CEPsat} \approx V_{CC} - 0.1 \forall$

- When v_{BP} and v_{BN} are high
 - Q_N supplies the load current
 - Q_P is inactive

To minimize crossover distortion, Q_P is forced to bias at about $I_Q/2$ instead of being turned-off

• The similar but opposite behavior happens when v_{BP} and v_{BN} are low

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

 $\downarrow i_N$

 V_{CC}

 v_{BP}

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

郭泰豪, Electronics(3), 2023

APP12-42

Buffer/Driver Stage

- - \rightarrow Driver stages are added
 - Q_3 is used to drive Q_N
 - Q_1 and Q_2 are used to drive Q_P because of the low β_P

Output-Stage Current Sensing

Prof. Tai-Haur Kuo, EE, NCKU, Tainan City, Taiwan

Output-Stage Current Sensing (Cont.)

since
$$i_{C6} = I \cdot \frac{i_N}{i_P + i_N}$$
 and $i_{C7} = I \cdot \frac{i_P}{i_P + i_N}$
 $v_E = v_{B7} + v_{BE7} = V_T \ln\left(\frac{i_N}{I_{SN}} \cdot \frac{i_{C7}}{I_{S7}}\right) v_E$
 $= v_{B7} + v_{BE7} = V_T \ln\left(\frac{i_N}{I_{SN}} \cdot \frac{i_{C7}}{I_{S7}}\right)$
 $= V_T \ln\left(\cdot \frac{i_P \cdot i_N}{i_P + i_N} \cdot \frac{I}{I_{SN}}\right)$
if $i_P >> i_N \Rightarrow v_E = V_T \ln\left(\frac{i_N}{I_{SN}}\right) + V_{EB7}$
similarly, if $i_P << i_N \Rightarrow v_E = V_T \ln\left(\frac{i_P}{I_{SN}}\right) + V_{EB6}$
 Q_4
 Q

• v_E is determined by the current of inactive transistor

Feedback for the Current of Inactive Transistor

\rightarrow Minimum current of inactive transistor is maintained
Minimum Current in the Inactive Output Transistor

 Assume the loop gain is high enough since $v_E = V_T \ln \left(\frac{i_P \cdot i_N}{i_P + i_N} \cdot \frac{I}{I_{SN} I_{S7}} \right)$ v_{IN} and $v_E = V_{REF} = V_T \ln\left(\frac{I_{REF}}{I_{S10}}\right) + V_T \ln\left(\frac{I_{REF}}{I_{S11}}\right)$ $\mathcal{Q}_{8} \mathcal{Q}_{9}$ $V_{REF} Q_{1C}$ $\Rightarrow \frac{i_P \cdot i_N}{i_P + i_N} = \left(\frac{I_{REF}^2}{I}\right) \left(\frac{I_{SN}}{I_{SN}}\right) \left(\frac{I_{S7}}{I}\right)$ Q_{11} In the quiescent case, $i_P = i_N = I_O$ $\Rightarrow I_{Q} = 2 \left(\frac{I_{REF}^{2}}{I} \right) \left(\frac{I_{SN}}{I_{SIO}} \right) \left(\frac{I_{S7}}{I_{SIO}} \right) \Rightarrow \frac{i_{P} \cdot i_{N}}{i_{P} + i_{P}} = \frac{1}{2} I_{Q}$ $\Rightarrow \begin{cases} i_P \approx 0.5 \cdot I_Q & \text{for } i_N >> i_P \\ i_N \approx 0.5 \cdot I_Q & \text{for } i_N << i_P \end{cases}$