Operational Amplifier（OPAMP）

－Analog ICs include
－Operational amplifier
－Filters
－Analog－to－digital converter（ADC）
－Digital－to－analog converter（DAC）
－Analog modulator
－Phase－locked loop
－Power management
－Others
－Basic building blocks of analog ICs
－Single－stage amplifier
－Differential pairs
－Current mirrors
－MOS switches
－Others

Operational Amplifier（Cont．）

－OPAMP design
－CMOS OPAMPs are adequate for VLSI implementation．
＞Main stream
＞Two－stage and folded－cascode OPAMPs will be introduced．
－Bipolar OPAMPs
＞Can achieve better performance than CMOS OPAMPs．
＞Less popular
＞ 741 OPAMP will be introduced．
－BiCMOS OPAMPs
＞Combine the advantages of bipolar and CMOS devices．
＞Less popular
＞First published by H．C．Lin in 1960＇s．

CMOS Operational Amplifier（OPAMP）

－Two－stage
I guess，it is for 70% applications．
－Folded－cascode
I guess，it is for 20\％applications．
－Others

Stability and Compensation of OPAMP

－Operational amplifier with negative feedback

$$
\begin{aligned}
& V_{i}^{-}(s)=\beta V_{o}(s) \\
& V_{o}(s)=A(s)\left(V_{i}(s)-V_{i}^{-}(s)\right) \\
& A_{f}(s)=\frac{V_{0}(s)}{V_{i}(s)}=\frac{A(s)}{1+\beta A(s)}
\end{aligned} \text { for }\left\{\begin{array}{l}
A_{f} \text { is closed-loop gain } \\
A \text { is open-loop gain } \\
\beta A \text { is loop gain }
\end{array}\right.
$$

Open－loop ：always stable（no internal feedback）
Closed－loop ：stability depends on $\beta \mathrm{A}(\mathrm{s})$

Stability and Compensation of OPAMP（Cont．）

－For stable system，the real part of all poles must be negative．
－Gain margin $=20 \log \left|\beta A\left(j \omega_{180}\right)\right|$
－Unity－gain frequency ω_{t}
－Phase Margin $=\Varangle \beta A\left(j \omega_{t}\right)+180^{\circ}$
At least $45^{\circ} \sim 60^{\circ}$（or larger）margin is preferred．
This will also give a desirable（i．e．，small or no ringing） step response for the closed－loop amplifier．

CMOS Amplifier with Resistive Load

－Resistor Load

$$
A=-g_{m}\left(R_{o} / / r_{o}\right)
$$

$$
\approx-\mathrm{gm}_{\mathrm{m}} \mathrm{R}_{\mathrm{o}}
$$

$$
\propto \frac{-\mathrm{I}_{\mathrm{D}} \mathrm{R}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{OV}}}
$$

－For high gain

- High $\mathrm{I}_{\mathrm{D}} \mathrm{R}_{0}$
$>$ High $I_{D} R_{0}$ means large voltage drop on R_{0}
＞Large power supply
- High R_{0} reduces speed
－Use active loads to overcome the above problems．

Resistance of Active Load

－Small signal model of NMOS

$$
\mathrm{r}_{\mathrm{o}}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{i}}=\mathrm{r}_{\mathrm{ds}}
$$

－Small signal model of diode－connected NMOS

－Same analysis method

$$
\begin{gathered}
\Delta i=g_{m} \Delta v+\frac{\Delta v}{r_{d s}} \\
r_{o}=\frac{\Delta v}{\Delta i}=r_{d s} \| \frac{1}{g_{m}}
\end{gathered}
$$

$$
\mathrm{r}_{\mathrm{o}}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{i}}=\mathrm{r}_{\mathrm{ds}} \| \frac{1}{\mathrm{~g}_{\mathrm{m}}}
$$

CMOS Amplifier with Active Load

－The effect of process variations on quiescent point $\mathrm{V}_{\text {OUT }}$
Nominal design：$\left(\frac{W}{L}\right)_{1}=\left(\frac{W}{L}\right)_{2}=\left(\frac{W}{L}\right)_{3}=\left(\frac{W}{L}\right)_{4}=\left(\frac{W}{L}\right)_{5}=1$
Assumption：$\left(\frac{W}{L}\right)_{1}=\left(\frac{W}{L}\right)_{2}=\left(\frac{W}{L}\right)_{3}=\left(\frac{W}{L}\right)_{4}=1,\left(\frac{W}{L}\right)_{5}=1 \pm 10 \%$ Due to process
$\rightarrow V_{\text {OUT }}$ is determined by the actual values of $M_{1} \sim M_{5}$

$(\mathrm{W} / \mathrm{L})_{5}=0.9 \quad(\mathrm{~W} / \mathrm{L})_{5}=1.0(\mathrm{~W} / \mathrm{L})_{5}=1.1$

Single－Ended Amplifier with Active Load

－ N －input common－source amplifier

$v_{I N}=V_{I N}+C \sin \omega t$
$v_{\text {OUT }}=V_{\text {OUT }}+A C \sin \omega t$
where $A=\frac{v_{o u t}}{v_{\text {in }}}=-g_{m n}\left(r_{d s p} \| r_{d s n}\right)$
－P－input common－source amplifier

$$
\begin{aligned}
& v_{\text {IN }}=V_{\text {IN }}+C \sin \omega t \\
& v_{\text {OUT }}=V_{\text {OUT }}+A C \sin \omega t
\end{aligned}
$$

where $A=\frac{v_{\text {out }}}{v_{\text {in }}}=-g_{m p}\left(r_{d s p} \| r_{d s n}\right)$
\rightarrow Quiescent point $\mathrm{V}_{\text {Out }}$ is hard to be determined with active load

Single－Ended Amplifier with Diode－Connected Load

－Input and load transistor types
－Different type

$v_{I N}=V_{I N}+C \sin \omega t$
$v_{\text {OUT }}=V_{\text {OUT }}+A C \sin \omega t$
$A=\frac{v_{\text {out }}}{v_{\text {in }}}=-g_{m n}\left(r_{d s p}\left\|r_{d s n}\right\| \frac{1}{g_{m p}}\right)$
$=-\frac{g_{m n}}{g_{m p}}$（gain with small $\sqrt{\frac{\mu_{n}}{\mu_{p}}}$ variation）
－Same type

$$
\begin{gathered}
v_{I N}=V_{I N}+C \sin \omega t \\
v_{\text {OUT }}=V_{\text {OUT }}+A C \sin \omega t
\end{gathered}
$$

$$
A=\frac{v_{o u t}}{v_{\text {in }}}=-g_{m n 1}\left(r_{d s n 1}\left\|r_{d s n 2}\right\| \frac{1}{g_{m n 2}}\right)
$$

$=-\frac{g_{m n 1}}{g_{m n 2}} \approx \sqrt{\frac{(W / \mathrm{L})_{\mathrm{MN} 1}}{(W / \mathrm{L})_{\mathrm{MN} 2}}}$（accurate gain）

CMOS Amplifier with Active Load

－With external bias

－Why not？
\rightarrow Quiescent point of $\mathrm{V}_{0}+\& \mathrm{~V}_{0}$－can＇t be determined due to process variations

CMOS Amplifier with Active Load（Cont．）

－Self－biased active load：quiescent V_{0} less sensitive to $M_{1} \sim M_{4}$ variations
－Performs differential gain and differential to single－ended
$g_{m, M 1}, g_{m, M 2}, g_{m, M 3}, g_{m, M 4} \gg \frac{1}{r_{d s}} ; r_{\text {out }} \approx r_{d s 2} \| r_{d s 4}$
－Differential gain $A_{d m}\left(v_{\mathrm{i} 1}=-v_{\mathrm{i} 2}=\frac{1}{2} v_{\mathrm{in}}\right)$
$A_{\mathrm{dm}} \approx \mathrm{g}_{\mathrm{m} 1}\left(\mathrm{r}_{\mathrm{ds} 2} \| \mathrm{r}_{\mathrm{ds} 4}\right)$ at node $\mathrm{B}=\mathrm{A}_{\mathrm{dm}} \mathrm{B}$
Node $\mathrm{A}: \mathrm{A}_{\mathrm{dmA}} \approx-\frac{1}{2} \mathrm{~g}_{\mathrm{m} 1} \cdot \frac{1}{\mathrm{gm}_{3}}$
Node B：$A_{d m B} \approx\left(-\frac{1}{2} g_{m 2}-A_{d m A} \cdot g_{m 4}\right) \cdot\left(r_{d s 2} \| r_{d s 4}\right)$
－Common－mode gain $A_{c m}\left(v_{i 1}=v_{i 2}=v_{1}\right)$
－CMRR（Common－Mode Rejection Ratio）
－Model of $\mathrm{A}_{\mathrm{dm}} / \mathrm{A}_{\mathrm{cm}}$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{A}}=\frac{1}{2} \frac{\mathrm{v}_{1}}{\mathrm{r}_{\mathrm{ds} 0}}\left(\frac{1}{\mathrm{~g}_{\mathrm{m} 3}}\left\|\mathrm{r}_{\mathrm{ds} 1}\right\| \mathrm{r}_{\mathrm{ds} 3}\right) \\
& \mathrm{A}_{\mathrm{cm}} \approx \frac{1}{2} \frac{1}{2} \frac{1}{\mathrm{r}_{\mathrm{ds} 0}}\left(\frac{1}{\mathrm{~g}_{\mathrm{m} 3}}\left\|\mathrm{r}_{\mathrm{ds} 1}\right\| \mathrm{r}_{\mathrm{ds} 3}\right) \approx \frac{1}{2 \mathrm{~g}_{\mathrm{m} 3} \mathrm{r}_{\mathrm{ds} 0}}
\end{aligned}
$$

$$
\mathrm{CMRR}=\frac{\mathrm{A}_{\mathrm{dm}}}{\mathrm{~A}_{\mathrm{cm}}} \approx 2 \mathrm{~g}_{\mathrm{m} 1}\left(\mathrm{r}_{\mathrm{ds} 2} \| \mathrm{r}_{\mathrm{ds} 4}\right) \mathrm{g}_{\mathrm{m} 3} \mathrm{r}_{\mathrm{ds} 0}
$$

Constant Transconductance Bias Circuit

－Biasing circuits that provide stable transconductances
－Transistor transconductances are matched to the conductance of a resistor． To a first－order effect，the transistor transconductances are independent of process as well as power－supply voltage and temperature variations（PVT variations）．
－ $\mathrm{Q}_{14}\left(\mathrm{Q}_{12}\right)$ causes voltage drop between a and c （ b and d）to minimize channel length modulation
－Q_{12} is diode－connected to provide a bias voltage to Q_{14}
－Example

$$
\left(\frac{\mathrm{w}}{\mathrm{~L}}\right)_{10}=\left(\frac{\mathrm{w}}{\mathrm{~L}}\right)_{11}=\left(\frac{\mathrm{w}}{\mathrm{~L}}\right)_{12}=\left(\frac{\mathrm{w}}{\mathrm{~L}}\right)_{13}=\left(\frac{\mathrm{w}}{\mathrm{~L}}\right)_{14}
$$

Bias loop Current mirror

Constant Transconductance Bias Circuit (Cont.)

$$
\begin{aligned}
& \begin{cases}\mathrm{V}_{\mathrm{ov} 13}=\mathrm{V}_{\mathrm{ov} 15}+\mathrm{I}_{\mathrm{D} 15} \mathrm{R}_{\mathrm{B}} & \text { bottom current mirror (widlar) } \\
\mathrm{I}_{\mathrm{D} 10}=\mathrm{I}_{\mathrm{D} 11} \mathrm{i} . \mathrm{e} . \mathrm{I}_{\mathrm{D} 13}=\mathrm{I}_{\mathrm{D} 15} & \text { top current mirror (linear) } \\
\mathrm{g}_{\mathrm{m} 13}=\frac{2 \mathrm{I}_{\mathrm{D}}}{\mathrm{~V}_{\mathrm{ov} 13}}\end{cases} \\
& \rightarrow \text { Simple derivation } \\
& \rightarrow \mathrm{g}_{\mathrm{m} 13}=2\left(\frac{\mathrm{~V}_{\mathrm{ov13}}-\mathrm{V}_{\mathrm{ov} 15}}{\mathrm{R}_{\mathrm{B}}}\right) \times \frac{1}{\mathrm{~V}_{\mathrm{ov13}}}=\frac{2\left[1-\sqrt{\left.\frac{\left(\mathrm{W} / \mathrm{L} \mathrm{~L}_{13}\right.}{(\mathrm{W} / \mathrm{L})_{15}}\right]}\right.}{\mathrm{R}_{\mathrm{B}}}
\end{aligned}
$$

- $g_{m 13}$ is determined by geometric ratios only, independent of process parameters, temperature (PVT), or any other parameters with large variability.
- At point A, loop gain $\mathrm{I}_{\mathrm{D} 10} \uparrow$

$$
\begin{align*}
& \text { At point A, loop gain } \\
& =\frac{(\mathrm{W} / \mathrm{L})_{11}}{(\mathrm{~W} / \mathrm{L})_{10}} \times \frac{(\mathrm{W} / \mathrm{L})_{15}}{(\mathrm{~W} / \mathrm{L})_{13}} \tag{D15}
\end{align*}
$$

Constant Transconductance Bias Circuit（Cont．）

－For a special case，$\left(\frac{\mathrm{W}}{\mathrm{L}}\right)_{15}=4\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)_{13} \rightarrow \mathrm{~g}_{\mathrm{m} 13}=\frac{1}{\mathrm{R}_{\mathrm{B}}}$
－Thus，not only is $g_{m 13}$ stabilized，but all other transistors transconductances are also stabilized since the ratios of transistor currents are mainly dependent on geometry．
－For all n－channel transistors

$$
\mathrm{g}_{\mathrm{mi}}=\sqrt{\frac{(\mathrm{W} / \mathrm{L})_{\mathrm{i}} \mathrm{I}_{\mathrm{Di}}}{(\mathrm{~W} / \mathrm{L})_{13} \mathrm{I}_{\mathrm{D} 13}}} \times \mathrm{g}_{\mathrm{m} 13}
$$

－For all p－channel transistors

$$
\begin{aligned}
& \left\{\begin{array}{l}
I_{D 10}=I_{D 13} \\
g_{m 10}=\sqrt{2 \mu_{p} C_{o x}(W / L)_{10} I_{D 10}} \\
g_{m 13}=\sqrt{2 \mu_{n} C_{o x}(W / L)_{13} I_{D 13}}
\end{array} \Rightarrow g_{m 10}=\sqrt{\frac{\mu_{p}}{\mu_{n}} \frac{(W / L)_{10}}{(W / L)_{13}}} \times g_{m 13}\right. \\
& \text { Similarly, } \mathrm{g}_{\mathrm{mi}}=\sqrt{\frac{\mu_{\mathrm{p}}(\mathrm{~W} / \mathrm{L})_{\mathrm{i}} \mathrm{I}_{\mathrm{Di}}}{\mu_{\mathrm{n}}(\mathrm{~W} / \mathrm{L})_{13} \mathrm{I}_{\mathrm{D} 13}}} \times \mathrm{g}_{\mathrm{m} 13}
\end{aligned}
$$

（Larger variation due to extra $\sqrt{\mu_{\mathrm{p}} / \mu_{\mathrm{n}}}$ variation）

Constant Transconductance Bias Circuit（Cont．）

－P－type constant transconductance bias circuit with start－up circuit
－Approximate current characteristics of the bias loop．
－Positive feedback bias loop：
$>$ Two stable points，A and B ．
＞At point A，loop gain
$\approx \frac{(\mathrm{W} / \mathrm{L})_{11}}{(\mathrm{~W} / \mathrm{L})_{10}} \times \frac{(\mathrm{W} / \mathrm{L})_{15}}{(\mathrm{~W} / \mathrm{L})_{13}}=4$

－For all n－channel transistors
＞$g_{m i}$ has larger variation due to extra $\sqrt{\mu_{\mathrm{n}} / \mu_{\mathrm{p}}}$ variation

Constant Transconductance Bias Circuit（Cont．）

－Start－up circuit
－Operational principle of start－up circuit
＞All currents in the bias loop are zero， Q_{17} will be off．
$>Q_{18}$ is always on，the gates of Q_{16} will be pulled high．
$>Q_{16}$ will inject currents into the bias loop，which will start up the circuit．
＞Once the loop starts up，Q_{17} will be on，pulling the gate of Q_{16} low，and thereby turning it off so it no longer affects the bias loop．
＞This circuit is only one example of a start－up loop，and there are many other variations．
＞For example，sometimes Q_{18} ，is replaced by an actual resistor．

Widlar Current Sources

－For large current mirror ratio
－Bipolar

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{REF}}=0.73 m A, \mathrm{R}_{\mathrm{A}}=5 \mathrm{k} \Omega \\
& \mathrm{~V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}=\mathrm{I}_{\mathrm{C} 2} \mathrm{R}_{\mathrm{A}} \\
& \Rightarrow \mathrm{~V}_{\mathrm{T}} \ln \frac{\mathrm{I}_{\mathrm{REF}}}{\mathrm{I}_{\mathrm{C} 2}}=\mathrm{I}_{\mathrm{C} 2} \mathrm{R}_{\mathrm{A}} \\
& \Rightarrow \text { Trial and error to determine } \mathrm{I}_{\mathrm{C} 2} \\
& \Rightarrow \mathrm{I}_{\mathrm{C} 2}=19 \mu \mathrm{~A}
\end{aligned}
$$

－MOSFET

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{OV} 1}=\mathrm{V}_{\mathrm{OV} 2}+\mathrm{I}_{\mathrm{D} 2} \times \mathrm{R}_{\mathrm{B}} \\
& \text { Assume } \mathrm{I}_{\mathrm{D}}=\mathrm{K} \cdot \mathrm{~V}_{\mathrm{OV}}^{2} \Rightarrow \sqrt{\frac{\mathrm{I}_{\mathrm{REF}}}{\mathrm{~K}}}=\sqrt{\frac{\mathrm{I}_{\mathrm{D} 2}}{\mathrm{~K}}}+\left(\sqrt{\mathrm{I}_{\mathrm{D} 2}}\right)^{2} \times \mathrm{R}_{\mathrm{B}} \\
& \sqrt{\mathrm{I}_{\mathrm{D} 2}}=\frac{-\sqrt{\frac{1}{\mathrm{~K}}} \pm \sqrt{\frac{1}{\mathrm{~K}}+4 \mathrm{R}_{\mathrm{B}} \sqrt{\frac{\mathrm{I}_{\mathrm{REF}}}{\mathrm{~K}}}}}{2 \mathrm{R}_{\mathrm{B}}} \\
& \Rightarrow \mathrm{I}_{\mathrm{D} 2}=\frac{1+2 \mathrm{R}_{\mathrm{B}} \sqrt{\mathrm{KI}_{\mathrm{REF}}}-\sqrt{1+4 \mathrm{R}_{\mathrm{B}} \sqrt{\mathrm{KI}_{\mathrm{REF}}}}}{2 \mathrm{~K}\left(\mathrm{R}_{\mathrm{B}}\right)^{2}}
\end{aligned}
$$

Wide－Swing Constant Transconductance Bias Circuit

－Wide－swing current mirrors＋constant g_{m} bias circuit

Wide－Swing Constant Transconductance Bias Circuit（Cont．）

－Wide－swing ：
$>$ Minimize V_{DS} of bias transistors to $\mathrm{V}_{\text {ov }}$
－Constant g_{m} ：$g_{m}=1 / R_{B}$
－Minimization of finite output impedance effect ：
＞Use cascode bias
－Start－up
＞Approximate current characteristics of the bias loop
＞At point A，loop gain $\approx \frac{(\mathrm{W} / \mathrm{L})_{7}}{(\mathrm{~W} / \mathrm{L})_{8}} \cdot \frac{(\mathrm{~W} / \mathrm{L})_{2}}{(\mathrm{~W} / \mathrm{L})_{3}}=4$

$$
\left(\mathrm{I}_{\mathrm{DS}\left(\mathrm{Q}_{2}\right)}\right) \mathrm{I}_{\mathrm{DS}\left(\mathrm{Q}_{8}\right)}
$$

Uncompensated Two－Stage CMOS OPAMP

－$P_{1} \& P_{2}$ are dominant poles since R_{01} and R_{02} are normally large． The effects of other poles are usually negligible．

Uncompensated Two－Stage CMOS OPAMP（Cont．）

－For low frequency，$A(j \omega)=A(0) \approx A_{0}$ For high frequency， $\mathrm{A}(\mathrm{j} \omega) \approx-\frac{\mathrm{gm}_{\mathrm{m} 1} \mathrm{gm}_{\mathrm{m}}}{\omega^{2} \mathrm{C}_{1} \mathrm{C}_{\mathrm{L}}}$ Hence，for high frequency，the amplifier inverts the input voltage．If feedback is used，then positive feedback occurs．
－Two dominant poles
－Phase margin is not large enough
－Use pole－splitting technique to solve this problem

Offset Voltage of Two－Stage CMOS OPAMPs

－Input voltage needs to restore the output to zero（ideal DC level）
－Two components
－Systematic offset
－Random offset
－To avoid systematic offset， design must follow the rule
$\frac{(\mathrm{W} / \mathrm{L})_{\mathrm{M} 3}}{(\mathrm{~W} / \mathrm{L})_{\mathrm{M} 5}}=\frac{(\mathrm{W} / \mathrm{L})_{\mathrm{M} 4}}{(\mathrm{~W} / \mathrm{L})_{\mathrm{M} 5}}=\frac{1}{2} \frac{(\mathrm{~W} / \mathrm{L})_{\mathrm{M} 6}}{(\mathrm{~W} / \mathrm{L})_{\mathrm{M} 7}}$

－To minimize random offset
－ $\mathrm{L}_{1}=\mathrm{L}_{2}, \mathrm{~W}_{1}=\mathrm{W}_{2}, \mathrm{~L}_{3}=\mathrm{L}_{4}, \mathrm{~W}_{3}=\mathrm{W}_{4}, \mathrm{~L}_{3}=\mathrm{L}_{6}$ and $\mathrm{L}_{5}=\mathrm{L}_{7}$ to minimize the offsets of channel length and channel width mismatch
－Large L and W such that $\Delta L / L$ and $\Delta W / W$ can be ignored

Input Common－Mode Range and Output Swing of Two－Stage CMOS OPAMP

－Input common－mode range， $\mathrm{V}_{\text {ICM }}$
－Minimum $V_{\text {ICM }}$
$>$ Keep M_{1} and M_{2} in saturation $\rightarrow \mathrm{V}_{\mathrm{dg} 1,2}<\left|\mathrm{V}_{\mathrm{tp}}\right|$
$>$ Hence，$V_{\mathrm{ICM}} \geq \mathrm{V}_{\mathrm{tn}}+\mathrm{V}_{\mathrm{OV} 3}-\left|\mathrm{V}_{\mathrm{tp}}\right|$ ，where V_{ov} is overdrive voltage
－Maximum $V_{\text {ICM }}$
$>$ Keep M_{5} in saturation， $\mathrm{V}_{\text {ds } 5}>\mathrm{V}_{\text {ov5 }}$
$>$ Hence， $\mathrm{V}_{\mathrm{ICM}} \leq \mathrm{V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{OV} 5}\right|-\left|\mathrm{V}_{\mathrm{tp}}\right|-\left|\mathrm{V}_{\mathrm{OV} 1}\right|$
$\rightarrow \mathrm{V}_{\mathrm{OV} 3}+\mathrm{V}_{\mathrm{tn}}-\left|\mathrm{V}_{\mathrm{tp}}\right| \leq \mathrm{V}_{\mathrm{ICM}} \leq \mathrm{V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{tp}}\right|-\left|\mathrm{V}_{\mathrm{OV} 1}\right|-\left|\mathrm{V}_{\mathrm{OV} 5}\right|$
－Output swing， V_{O}
－Keep M_{6} and M_{7} in saturation

$$
\mathrm{V}_{\mathrm{OV} 6} \leq \mathrm{V}_{\mathrm{o}} \leq \mathrm{V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{OV} 7}\right|
$$

Miller Effect

－Resistor

$$
\sum_{\underline{=}}^{\sum_{n}} R \quad I=\frac{V}{R}
$$

－Miller effect on resistor

$$
\begin{aligned}
I=\frac{\Delta V}{R} & =\frac{(1+A) V}{R} \\
R_{e f f} & =\frac{R}{1+\mathrm{A}}
\end{aligned}
$$

－Capacitor

$$
\frac{\mathrm{V} \text { O}}{\frac{1}{\underline{1}}} \mathrm{C}
$$

$$
\mathrm{Q}=\mathrm{CV}
$$

－Miller effect on capacitor

$\mathrm{Q}=\mathrm{C} \cdot \Delta \mathrm{V}=\mathrm{C}(1+\mathrm{A}) \mathrm{V}$

$$
C_{e f f}=(1+A) C
$$

Pole and Zero

－LHP pole

$$
\begin{gathered}
\mathrm{H}(\mathrm{~s})=\frac{1}{1+\mathrm{s} / \omega_{\mathrm{p} 1}} \\
\underset{\substack{\omega_{\mathrm{p} 1}}}{ }+\longrightarrow
\end{gathered}
$$

－LHP zero

$$
H(s)=1+s / \omega_{\mathrm{z} 1}
$$

－RHP zero
$H(s)=1-s / \omega_{z 2}$

LHP：Left－hand plane，RHP：Right－hand plane

Pole－Splitting of Two－Stage CMOS OPAMP

－Reduce $\omega_{\text {Pl }}$ and increase $\omega_{\mathrm{P} 2}$

$\mathrm{C}_{1}=\mathrm{C}_{\mathrm{gd} 2}+\mathrm{C}_{\mathrm{db} 2}+\mathrm{C}_{\mathrm{gd} 4}+\mathrm{C}_{\mathrm{db} 4}+\mathrm{C}_{\mathrm{g} 56}$
$C_{L}=C_{d b 6}+C_{d b 7}+C_{g d 7}+C_{\text {load }}$
C_{C} includes $C_{g d 6}$

$$
\mathrm{A}(\mathrm{~s})=\frac{\mathrm{A}_{0}\left(1-\mathrm{s} / \omega_{\mathrm{Z}}\right)}{\left(1+\mathrm{s} / \omega_{\mathrm{P} 1}\right)\left(1+\mathrm{s} / \omega_{\mathrm{P} 2}\right)}
$$

$$
A_{0}=g_{\mathrm{m} 1} R_{01} g_{\mathrm{m} 6} \mathrm{R}_{02}
$$

$$
\mathrm{g}_{\mathrm{m} 1}=\sqrt{2 \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{OX}}(\mathrm{~W} / \mathrm{L})_{\mathrm{M}_{1}} \mathrm{I}_{1}}
$$

$$
\mathrm{g}_{\mathrm{m} 6}=\sqrt{2 \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}}(\mathrm{~W} / \mathrm{L})_{\mathrm{M}_{6}} \mathrm{I}_{6}}
$$

$$
\mathrm{R}_{01}={\underset{\mathrm{r}}{\mathrm{ds} 2}}^{\mathrm{r}^{2}} / / \mathrm{r}_{\mathrm{ds} 4}
$$

$$
\mathrm{R}_{02}={\underset{\mathbf{g}}{\mathrm{ds} 6}}^{\mathrm{r}_{6}} / / \mathrm{r}_{\mathrm{ds} 7}
$$

$$
\omega_{\mathrm{z}} \approx \frac{\mathrm{~g}_{\mathrm{m} 6}}{\mathrm{C}_{\mathrm{C}}}
$$

$$
\text { If } g_{m 6} R_{02} \gg 1
$$

$$
\omega_{\mathrm{P} 1}=\frac{\mathrm{C}_{\mathrm{C}}}{\left(1+\mathrm{g}_{\mathrm{m} 6} \mathrm{R}_{02}\right) \mathrm{C}_{\mathrm{C}} \mathrm{R}_{01}} \stackrel{\downarrow}{\approx \frac{-g_{\mathrm{m} 1}}{\mathrm{~A}_{0} \mathrm{C}_{\mathrm{C}}}}
$$

$$
\text { If } C_{C} \& C_{L} \gg C_{1}
$$

$$
\omega_{\mathrm{P} 2}=\frac{-g_{\mathrm{m} 6} C_{\mathrm{C}}}{\mathrm{C}_{\mathrm{L}} \mathrm{C}_{1}+\mathrm{C}_{\mathrm{L}} \mathrm{C}_{\mathrm{C}}+\mathrm{C}_{\mathrm{C}} \mathrm{C}_{1}} \stackrel{\downarrow}{\approx} \frac{-\mathrm{g}_{\mathrm{m} 6}}{\mathrm{C}_{\mathrm{L}}}
$$

\Rightarrow Right plane zero causes slower gain drop but quick phase drop

Pole－Splitting of Two－Stage CMOS OPAMP（Cont．）

－Unity－gain frequency $\mathrm{f}_{\mathrm{t}}\left(\right.$ or $\left._{\mathrm{u}}\right)=\left\lvert\, \mathrm{A}_{0} \frac{\omega_{\mathrm{P} 1}}{2 \pi}=\frac{1}{2 \pi} \frac{\mathrm{~g}_{\mathrm{ml}}}{\mathrm{C}_{\mathrm{C}}}\right.$
－To achieve an uniform $-20 \mathrm{~dB} / \mathrm{dec}$ gain rolloff down to 0 dB ， the following two conditions must be satisfied
1． $\mathrm{f}_{\mathrm{t}}<\mathrm{f}_{\mathrm{p} 2} \Rightarrow \frac{\mathrm{~g}_{\mathrm{m} 1}}{\mathrm{C}_{\mathrm{C}}}<\frac{\mathrm{g}_{\mathrm{m}}}{\mathrm{C}_{\mathrm{L}}}$
2． $\mathrm{f}_{\mathrm{t}}<\mathrm{f}_{\mathrm{z}} \Rightarrow \mathrm{g}_{\mathrm{m} 1}<\mathrm{g}_{\mathrm{m} 6}$
－At unity－gain frequency $f_{t}\left(\right.$ or $\left.f_{u}\right)$

$$
\Phi_{\text {total }}=\tan ^{-1}\left(\frac{f_{\mathrm{t}}}{f_{\mathrm{p} 1}}\right)+\tan ^{-1}\left(\frac{f_{\mathrm{t}}}{\mathrm{f}_{\mathrm{p} 2}}\right)+\tan ^{-1}\left(\frac{\mathrm{f}_{\mathrm{t}}}{\mathrm{f}_{\mathrm{z}}}\right)
$$

where $\tan ^{-1}\left(\frac{f_{\mathrm{t}}}{f_{\mathrm{p} 1}}\right) \cong 90^{\circ}$
Phase margin $=180^{\circ}-\Phi_{\text {total }}$
$=90^{\circ}-\tan ^{-1}\left(\frac{\mathrm{f}_{\mathrm{t}}}{\mathrm{f}_{\mathrm{p} 2}}\right)-\tan ^{-1}\left(\frac{\mathrm{f}_{\mathrm{t}}}{\mathrm{f}_{\mathrm{z}}}\right)$

Right－Plane Zero

－Causes slower gain drop but quicker phase drop Usually moved away if phase margin is not large enough

Right－Plane Zero（Cont．）

－The zero is due to the existence of two path through which the signal can propagate from node A to node B

1．through C_{C}

2．through the controlled source $g_{m 6} V_{A}$
－To eliminate zero ω_{z}

1．Method－1

2．Method－2

Elimination of Right－Plane Zero

－Method－1：Use unity－gain buffer \rightarrow Zero moves to infinity

$\xrightarrow[\omega_{\mathrm{P} 2}]{\omega_{\mathrm{P} 1}} \quad \underset{\omega_{\mathrm{Z}}}{\text { Zero moves to infinity }}$（

$$
A(s)=\frac{A_{0}}{\left(1+\frac{s}{\omega_{\mathrm{P} 1}}\right)\left(1+\frac{\mathrm{S}}{\omega_{\mathrm{P} 2}}\right)} \quad \text { where } \omega_{\mathrm{P} 1} \approx-\frac{g_{m 1}}{A_{0} C_{C}}, \omega_{\mathrm{P} 2} \approx \frac{-\mathrm{g}_{\mathrm{m} 6}}{\mathrm{C}_{\mathrm{L}}}
$$

Elimination of Right－Plane Zero（Cont．）

－Method－2：Using R instead of buffer
－Elimination of zero \rightarrow Let $\mathrm{R}_{\mathrm{Z}}=\frac{1}{\mathrm{~g}_{\mathrm{m}}}$
－Pole－zero cancellation \rightarrow Let $\omega_{\mathrm{Z}}=\omega_{\mathrm{P} 2}$

$$
\begin{aligned}
& \omega_{\mathrm{P} 1} \approx-\frac{\mathrm{g}_{\mathrm{m} 1}}{\mathrm{~A}_{0} \mathrm{C}_{\mathrm{C}}} \\
& \omega_{\mathrm{P} 2} \approx-\frac{\mathrm{g}_{\mathrm{m}}}{\mathrm{C}_{\mathrm{L}}} \\
& \omega_{\mathrm{P} 3} \approx-\frac{1}{\mathrm{R}_{\mathrm{Z}}}\left(\frac{1}{\mathrm{C}_{\mathrm{C}}}+\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{\mathrm{L}}}\right) \\
& \omega_{\mathrm{Z}}=-\frac{1}{\left[\mathrm{R}_{\mathrm{Z}}-\left(\frac{1}{\mathrm{~g}_{\mathrm{m}}}\right)\right] \mathrm{C}_{\mathrm{C}}}
\end{aligned}
$$

Zero moves toward the left plane as R_{z} increase

Pole Separation vs．Phase Margin and Speed

－$\omega_{\mathrm{t}}=\frac{1}{\mathrm{n}} \omega_{2}=\beta \mathrm{A}_{0} \omega_{1}$
－Step response（with fixed ω_{2} ）
－ $\mathrm{n}=2$
＞Phase margin $=63^{\circ}$
＞Fast
－ $\mathrm{n}=3$
$>$ Phase margin $=71^{\circ}$

－ $\mathrm{n}=4$
＞Phase margin＝ 76°
＞Critically damped

Introduction of Slew Rate（SR）

－Definition：Maximum change rate of voltage

－SR depends on system driving currents and capacitive loads
－SR should be considered at all nodes in circuit，for example：

$$
\mathrm{SR}=\left.\frac{\mathrm{dv}_{\mathrm{o}}}{\mathrm{dt}}\right|_{\max }=\left.\frac{\mathrm{I}_{\mathrm{i}}}{\mathrm{C}_{\mathrm{i}}}\right|_{\min } \quad \mathrm{i}=1,2,3 \ldots . \quad V_{1}=\frac{1}{C_{1}} \int_{0}^{t} I_{1} d t
$$

SR Effect on Sinusoidal Response

－Voltage change rate without SR limitation

$$
\begin{equation*}
\mathrm{v}_{\mathrm{i}}=\mathrm{v}_{\mathrm{o}}=\hat{\mathrm{V}}_{\mathrm{i}} \sin \omega \mathrm{t} \Rightarrow \frac{\mathrm{dv} \mathrm{v}_{\mathrm{o}}}{\mathrm{dt}}=\left.\omega \hat{\mathrm{V}}_{\mathrm{i}} \cos \omega \mathrm{t} \Rightarrow \frac{\mathrm{dv}}{\mathrm{dt}}\right|_{\max }=\omega \hat{\mathrm{V}}_{\mathrm{i}} \cos 0=\omega \hat{\mathrm{V}}_{\mathrm{i}} \tag{f}
\end{equation*}
$$

－Full－power bandwidth $\left(\mathrm{f}_{\mathrm{M}}\right)$
$\mathrm{SR}=\omega_{\mathrm{M}} \mathrm{V}_{\mathrm{o}_{-} \max } \Rightarrow \mathrm{f}_{\mathrm{M}}=\frac{\mathrm{SR}}{2 \pi \mathrm{~V}_{\mathrm{o}_{\mathrm{Z}} \operatorname{mx}}}\left\{\begin{array}{l}\mathrm{V}_{\mathrm{o}_{\mathrm{o}} \max } \text { ：rated opamp output voltage } \\ \omega_{\mathrm{M}}: \text { ：maximum input frequency without distortion }\end{array}\right.$
－SR effect on sine waves
－Small amplitude，low freq．

－Small amplitude，high freq．

－Large amplitude，low freq．

SR limitation depends on amplitude and frequency

SR Effect on Step Response of a One－Pole System

－Step response of a one－pole system
－Ideal response：Exponential output $\mathrm{v}_{\mathrm{O}, \text { Ideal }}(\mathrm{t})$

$$
\mathrm{v}_{\mathrm{O}, \text { Ideal }}(\mathrm{t})=\mathrm{V}_{\mathrm{i}}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right) \Rightarrow \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{v}_{\mathrm{O}, \text { Ideal }}(\mathrm{t})\right)=\frac{\mathrm{V}_{\mathrm{i}}}{\tau} \mathrm{e}^{-t / \tau}
$$

－Without large enough system SR \rightarrow Slewing happens

$$
\text { When } \mathrm{SR}<\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{v}_{\mathrm{O}, \text { Ideal }}(\mathrm{t})\right) \Rightarrow \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{v}_{\mathrm{O}, \text { Real }}(\mathrm{t})\right)=\mathrm{SR} \text { (As } 0 \sim \mathrm{t}_{1} \text { in the waveform below) }
$$

－Example：RC filter with current－limited voltage source

SR Analysis of Two－Stage OPAMP

－ V_{0} rising process
－Large positive input at $\mathrm{V}_{\mathrm{i}+}$
－M ${ }_{1}$ turned off
－I_{5} flows through C_{c}
－Driving capability of I_{6} is usually large \rightarrow SR not limited by I_{6}
－ $\mathrm{SR}=\mathrm{I}_{5} / \mathrm{C}_{\mathrm{c}}$
－ V_{0} falling process
－Large positive input at V_{i}
－ M_{2} turned off
－ I_{5} flow through C_{c}
$>I_{7}$ large enough： $\mathrm{SR}=\mathrm{I}_{5} / \mathrm{C}_{\mathrm{c}}$
$>I_{7}$ not large enough： $\mathrm{SR}=\mathrm{I}_{7} /\left(\mathrm{C}_{\mathrm{C}}+\mathrm{C}_{\mathrm{L}}\right)$
－$S R$ when I_{7} is large enough

$$
\mathrm{g}_{\mathrm{m} 1}=\sqrt{2 \mu_{n} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}_{\mathrm{M} 1}}{\mathrm{~L}_{\mathrm{M} 1}} \frac{\mathrm{I}_{5}}{2}}, \quad \omega_{\mathrm{t}}=\frac{\mathrm{g}_{\mathrm{m} 1}}{\mathrm{C}_{\mathrm{C}}} \Rightarrow \mathrm{SR}=\left.\frac{\mathrm{dv}(\mathrm{t})}{\mathrm{dt}}\right|_{\max }=\frac{\mathrm{I}_{5}}{\mathrm{C}_{\mathrm{C}}}=\omega_{\mathrm{t}} \sqrt{\frac{\mathrm{I}_{5} \mathrm{~L}_{\mathrm{M} 1}}{\mu_{n} \mathrm{C}_{\mathrm{ox}} \mathrm{~W}_{\mathrm{M} 1}}}=\left(\mathrm{V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{t}}\right) \omega_{\mathrm{t}}
$$

Example－Negative Feedback Amplifier

－Slew rate
－Assume the output driving current is large enough
SR $=\left|\frac{\mathrm{dV}_{\text {out }}}{\mathrm{dt}}\right|=\left|-\frac{1}{\mathrm{C}_{\mathrm{c}}} \frac{\mathrm{d} \mathrm{Q}_{\mathrm{c}}}{\mathrm{dt}}\right|=\frac{\mathrm{I}_{5}}{\mathrm{C}_{\mathrm{c}}}$
For $\left\{\begin{aligned} & \omega_{\mathrm{t}}=\frac{\mathrm{g}_{\mathrm{m} 1}}{\mathrm{C}_{\mathrm{C}}} \Rightarrow \mathrm{C}_{\mathrm{C}}=\frac{g_{m 1}}{\omega_{\mathrm{t}}} \\ & g_{\mathrm{m} 1}=\sqrt{2 \mu_{\mathrm{n}} C_{o x}\left(\frac{W}{L}\right)_{M 1} \frac{\mathrm{I}_{5}}{2}}\end{aligned}\right.$
$\Rightarrow S R=\frac{\mathrm{I}_{5} \omega_{\mathrm{t}}}{\mathrm{g}_{\mathrm{m} 1}}=\omega_{\mathrm{t}} \sqrt{\frac{\mathrm{I}_{5}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}}\left(\frac{\mathrm{W}}{\mathrm{L}}\right)_{\mathrm{M} 1}}}$
－Slew rate can be increased by
－Increasing the unity－gain bandwidth
－Increasing bias current of input stage

－Decreasing the W／L ratio of the input transistors

Power－Supply Rejection Ratio（PSRR）

－Mixed－signal circuits combine analog and digital circuits
\Rightarrow Switching activity in digital portion results in supply ripple
－Add large capacitors between supply rails and ground \Rightarrow not practical in IC design
－High－PSRR analog circuits
－Definition $\left\{\begin{array}{l}\text { PSRR }^{+} \equiv \frac{A_{d}}{A^{+}}, \text {where } \\ \text { PSRR }^{-} \equiv \frac{A_{d^{-}}}{A^{-}}\end{array}\left\{\begin{array}{l}\mathrm{A}^{+} \equiv \frac{\mathrm{V}_{0}}{V_{D D}} \\ \mathrm{~A}^{-} \equiv \frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{gnd}}}\end{array}\right.\right.$
－For a two－stage op amp

$$
\begin{aligned}
& >V_{o}=V_{\mathrm{gnd}} \times \frac{r_{\mathrm{o} 7}}{r_{\mathrm{o} 6}+r_{\mathrm{o} 7}} \\
& \Rightarrow A^{-} \equiv \frac{V_{\mathrm{O}}}{V_{\mathrm{gnd}}}=\frac{r_{\mathrm{o} 7}}{r_{\mathrm{o} 6}+r_{\mathrm{o} 7}} \\
& \quad \Rightarrow \mathrm{PSRR}^{-} \equiv \frac{A_{d}}{A^{-}}=g_{\mathrm{m} 1}\left(r_{\mathrm{o} 2} \| r_{\mathrm{o} 4}\right) \mathrm{g}_{\mathrm{m} 6} r_{\mathrm{o} 6}
\end{aligned}
$$

$>$ It＇s insensitive to $\mathrm{V}_{\mathrm{DD}} \Rightarrow$ PSRR $^{+}$is high［Ref．］
［Ref．］P．R．Gray，P．J．Hurst，A．H．Lewis，and R．G．Meyer，Analysis and Design of Analog Integrated Circuits， $5^{\text {th }}$ ed．，New York：John Wiley \＆Sons，2009．pp．430－432

Design Trade－offs

－To increase the differential gain，CMRR，and PSRR for a two－stage op amp
－Enlarge the length L for the channel of each MOSFET
－Lower the $\left|\mathrm{V}_{\text {ov }}\right|$ at which each MOSFET is operated

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{O}}=\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{d}} \propto \sqrt{\mathrm{I}} \cdot \frac{1}{\lambda \mathrm{I}}=\frac{1}{\lambda \sqrt{\mathrm{I}}} \propto \frac{\mathrm{~L}}{\sqrt{\mathrm{I}}}, \text { where } \lambda \propto \frac{1}{\mathrm{~L}} \text { (roughly) } \\
& \omega_{t}=\frac{\mathrm{gm}_{\mathrm{m}}}{\mathrm{C}} \propto \frac{\sqrt{\mathrm{I}}}{\mathrm{C}} \propto \sqrt{\mathrm{I}}
\end{aligned}
$$

－The transition frequency of the MOSFETs can be increased by using a shorter channel and／or a larger $\left|\mathrm{V}_{\mathrm{ov}}\right|$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{t}}=\frac{\mathrm{g}_{\mathrm{m}}}{2 \pi\left(\mathrm{C}_{\mathrm{gs}}+\mathrm{C}_{\mathrm{gd}}\right)}=\frac{2 \cdot \frac{1}{2} \mu \mathrm{C}_{\mathrm{OX}} \frac{\mathrm{~W}}{\mathrm{~L}} \mathrm{~V}_{\mathrm{OV}}^{2} / \mathrm{V}_{\mathrm{OV}}}{2 \pi\left(\frac{2}{3} \mathrm{WLC}_{\mathrm{OX}}\right)} \approx \frac{1.5 \cdot \mu \cdot\left|\mathrm{~V}_{\mathrm{OV}}\right|}{2 \pi \mathrm{~L}^{2}} ; \text { where }\left\{\begin{array}{c}
\mu: \text { carrier mobility } \\
\mathrm{V}_{\mathrm{OV}}: \text { overdrive voltage } \\
\text { L: channel length }
\end{array}\right. \\
& \mathrm{g}_{\mathrm{m}}=\frac{2 \mathrm{I}}{\mathrm{~V}_{\mathrm{OV}}}, \mathrm{C}_{\mathrm{gs}} \approx \frac{2}{3} \mathrm{WLC}_{\mathrm{OX}} \text { and } \mathrm{C}_{\mathrm{gs}} \gg \mathrm{C}_{\mathrm{gd}}
\end{aligned}
$$

－In conclusion，it＇s a trade－off between low－frequency performance parameters and high－frequency ones
\rightarrow For analog circuits in submicron process operated at $1 \mathrm{~V} \sim 1.5 \mathrm{~V}$ supplies， $0.1 \mathrm{~V} \sim 0.3 \mathrm{~V}$ of $\left|\mathrm{V}_{\text {ov }}\right|$ is typically used，and the typical channel lengths are usually at least 1．5～2 times the $\mathrm{L}_{\text {min }}$

Cascade and Cascode CMOS OPAMPs

－Cascade two－stage CMOS OPAMP
－Most popular and works well with low capacitive load
－Problems
$>$ Limited slew rate due to large C_{c}
＞Limited bandwidth with large C_{L}
－If 1 ．low output resistance is not required，
2．high open－loop gain is required，and
3．large phase margin can be maintained with large C_{L} ， then cascode configuration can provide attractive solutions for the above problems．
－Cascode CMOS OPAMP
－Gain of two－stage OPAMP can be increased by adding gain stage in cascade． \Rightarrow phase shift is increased（i．e．PM \downarrow ）
－Cascode configurations can be used to increase gain in the existing stage．

Cascode CMOS OPAMP

－Output resistance (Ro) is increased

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{O4}} \approx\left(\mathrm{~g}_{\mathrm{m} 4} \mathrm{r}_{\mathrm{ds4}}\right) \mathrm{r}_{\mathrm{ds} 2} \\
& \mathrm{R}_{\mathrm{O6}} \approx\left(\mathrm{~g}_{\mathrm{m} 6} \mathrm{r}_{\mathrm{ds6} 6}\right) \mathrm{r}_{\mathrm{d} 58} \\
& \mathrm{R}_{\mathrm{O}}=\mathrm{R}_{\mathrm{O} 4} \| \mathrm{R}_{\mathrm{O}}
\end{aligned}
$$

－Voltage gain $A=-g_{m 1} R_{0}$ \Rightarrow Gain is increased．
－Common－mode range is lowered and more transistors are stacked between the two power supplies．

\Rightarrow Folded－cascode has larger common－mode range
－Cascode and folded－cascode OPAMPs are also named as ＂transconductance OPAMP＂or
＂operational transconductance amplifier（OTA）＂

Folded－Cascode CMOS OPAMP

－ $\mathrm{Q}_{3} \sim \mathrm{Q}_{8}$ are folded and connected to GND

Folded－Cascode CMOS OPAMP（Cont．）

－$Q_{3}, Q_{4}, Q_{9} \sim Q_{11}$ form externally－biased current sources $Q_{5} \sim Q_{8}$ form self－biased current sources

Folded－Cascode CMOS OPAMP

－Input common－mode range
Common－mode range is increased（compared with cascode OPAMPs）．However，it is small compared with 2－stage OPAMPs

$$
\mathrm{V}_{\mathrm{OV} 11}+\mathrm{V}_{\mathrm{OV} 1}+\mathrm{V}_{\mathrm{tn}} \leq \mathrm{V}_{\mathrm{ICM}} \leq \mathrm{V}_{\mathrm{DD}}-\left|\mathrm{V}_{\mathrm{OV}}\right|+\mathrm{V}_{\mathrm{tn}}
$$

－Output voltage swing

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{V}_{\mathrm{oV} 7}+\mathrm{V}_{\mathrm{ov} 5}+ \\
\text { Voltage gain }
\end{array} \\
& \text { - Voltage gain } \\
& \mathrm{A}=\mathrm{G}_{\mathrm{m}} \mathrm{R}_{\mathrm{O}}=\mathrm{g}_{\mathrm{m} 1} \mathrm{R}_{\mathrm{O}} \\
& \mathrm{R}_{\mathrm{O}}=\mathrm{R}_{\mathrm{O} 4} \| \mathrm{R}_{\mathrm{O} 6}
\end{aligned}
$$

$$
=\left[g_{m 4} r_{\mathrm{ds} 4}\left(\mathrm{r}_{\mathrm{ds} 2} \| \mathrm{r}_{\mathrm{ds} 10}\right)\right] \|\left[\mathrm{g}_{\mathrm{m} 6} \mathrm{r}_{\mathrm{ds} 6} \mathrm{r}_{\mathrm{ds} 8}\right]
$$

Folded－Cascode CMOS OPAMP

－Frequency response －Bode plot

$$
\begin{aligned}
& \omega_{\mathrm{p}} \approx \frac{1}{\mathrm{R}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}} \\
& \omega_{\mathrm{t}} \approx \frac{\mathrm{~g}_{\mathrm{m} 1}}{\mathrm{C}_{\mathrm{L}}}
\end{aligned}
$$

－The only high－impedance point is the output node． \Rightarrow Dominant pole is generated at the output node
－The resistance of all other nodes at level of $1 / \mathrm{gm}$ \Rightarrow Nondominant poles occur at all other nodes．

The 2nd pole is usually at the source of M_{3} and M_{4} ．
－Nondominant poles are usually at frequencies beyond ω_{t} \Rightarrow If C_{L} is increased，then phase margin is increased．
\Rightarrow If C_{L} is not large enough，it can be augmented．
\rightarrow No frequency compensation is required
\Rightarrow wide bandwidth
－If $\mathrm{I}_{\mathrm{B}} \geq \mathrm{I}$ ，slew rate $\mathrm{SR}=\mathrm{I} / \mathrm{C}_{\mathrm{L}}=\omega_{\mathrm{t}} \mathrm{V}_{\mathrm{OV} 1}\left(\because \mathrm{~g}_{\mathrm{m} 1}=\frac{\mathrm{I}}{\mathrm{V}_{\mathrm{oV} 1}}, \mathrm{f}_{\mathrm{t}}=\frac{\mathrm{gm}_{\mathrm{m} 1}}{2 \pi \mathrm{C}_{\mathrm{L}}}\right)$

Folded－Cascode CMOS OPAMP（Cont．）

－Folded－cascode OPAMPs have high open－loop output resistance It has been given the name operational transconductance amplifier（OTA）
－Its high output resistance（in the order of $\mathrm{g}_{\mathrm{m}} \mathrm{r}_{0}{ }^{2}$ ）is far from that for an ideal OPAMP（which has zero output resistance）
－To alleviate this concern somewhat，let us find the closed－loop output resistance $\mathrm{R}_{\text {of }}$ of a unity－gain follower $(\beta=1)$ formed by connecting the output terminal back to the negative input terminal $\mathrm{R}_{\text {of }}=\frac{\mathrm{R}_{\mathrm{o}}}{1+\mathrm{A} \beta}=\frac{\mathrm{R}_{\mathrm{o}}}{1+\mathrm{A}} \approx \frac{\mathrm{R}_{\mathrm{o}}}{\mathrm{A}} \Rightarrow \mathrm{R}_{\mathrm{of}} \approx \frac{1}{\mathrm{G}_{\mathrm{m}}}$ A general result applying to any OTA with 100% voltage feedback． For folded－cascode OPAMPs， $\mathrm{G}_{\mathrm{m}} \approx \mathrm{g}_{\mathrm{m} 1} \Rightarrow \mathrm{R}_{\mathrm{of}} \approx \frac{1}{\mathrm{~g}_{\mathrm{m} 1}}$
－$g_{m 1}$ is in the order of $1 \mathrm{~mA} / \mathrm{V}$ ，and $R_{\text {of }}$ will be of the order $1 \mathrm{k} \Omega$ Although this is not very small，it＇s reasonable in view of the simplicity of the OPAMP circuit as well as the fact that this type of OPAMP（OTA）is not usually intended to drive low－valued resistive load．

Wide－Swing Current Mirror

－Increased output voltage range
$-\mathrm{v}_{\mathrm{O} \min } \geq \mathrm{V}_{\mathrm{OV} 1}+\mathrm{V}_{\mathrm{OV} 3}+\mathrm{V}_{\mathrm{tn}}$

－ $\mathrm{V}_{\mathrm{Omin}} \geq \mathrm{V}_{\mathrm{OV} 1}+\mathrm{V}_{\mathrm{OV} 3}$

Wide－Swing Current Mirror（Cont．）

－Design example a varying signal $I_{\text {in }} \leq I_{\text {bias }}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{OV}_{2}}=\mathrm{V}_{\mathrm{OV}_{3}}=\sqrt{\frac{2 \mathrm{I}_{\mathrm{D}_{2}}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}(\mathrm{~W} / \mathrm{L})}}=\mathrm{V}_{\mathrm{OV}} \\
& \left(\because \mathrm{I}_{\mathrm{D} 2}=\frac{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}}{2} \frac{\mathrm{~W}}{\mathrm{~L}} \mathrm{~V}_{\mathrm{eff}}{ }^{2}\right) \\
& \text { Since }\left(\frac{W}{L}\right)_{2}=\left(\frac{W}{L}\right)_{3}=(n+1)^{2}\left(\frac{W}{L}\right)_{5}=n^{2}\left(\frac{W}{L}\right)_{1}=n^{2}\left(\frac{W}{L}\right)_{4}^{(n+1)^{2}} \\
& \mathrm{~V}_{\mathrm{OV}_{1}}=\mathrm{V}_{\mathrm{OV}_{4}}=\mathrm{nV}_{\mathrm{OV}} \text { for the target } \mathrm{I}_{\mathrm{in}}=\mathrm{I}_{\mathrm{bias}} \\
& \mathrm{~V}_{\mathrm{G}_{5}}=\mathrm{V}_{\mathrm{G}_{4}}=\mathrm{V}_{\mathrm{G}_{1}}=(\mathrm{n}+1) \mathrm{V}_{\mathrm{OV}}+\mathrm{V}_{\mathrm{th}} \\
& \mathrm{~V}_{\mathrm{DS}_{2}}=\mathrm{V}_{\mathrm{DS}_{3}}=\mathrm{V}_{\mathrm{G}_{5}}-\mathrm{V}_{\mathrm{GS}_{1}}=\mathrm{V}_{\mathrm{G}_{5}}-\left(\mathrm{nV}_{\mathrm{OV}}+\mathrm{V}_{\mathrm{th}}\right)=\mathrm{V}_{\mathrm{OV}} \\
& \Rightarrow \mathrm{~V}_{\mathrm{o}}>\mathrm{V}_{\mathrm{OV}_{1}}+\mathrm{V}_{\mathrm{OV}_{2}}=(\mathrm{n}+1) \mathrm{V}_{\mathrm{OV}}
\end{aligned}
$$

－A common choice， $\mathrm{n}=1, \mathrm{~V}_{\text {out }}>2 \mathrm{~V}_{\mathrm{OV}}$

Folded－Cascode with Wide－Swing Current Mirror

Folded－Cascode with Rail－to－Rail Input Operation

－Increased input common－mode range，rail－to－rail or even larger
－Voltage gain，if $g_{m 1}=g_{m 3}=G_{m}$
－$A=\left(g_{m 1}+g_{m 3}\right) R_{o}=2 G_{m} R_{o}$ for middle $V_{\text {ICM }}$
－$A=g_{m 1} R_{0}$ for high $V_{\text {ICM }}$
－$A=g_{m 3} R_{0}$ for low $V_{\text {ICM }}$

BiCMOS Folded－Cascode OPAMP

－Configuration

－When it is necessary to drive a resistive load，a low resistance output buffer is needed

BiCMOS Folded－Cascode OPAMP（Cont．）

－The largest nondominant pole is usually generated at the emitter nodes of $Q_{1 c}$ and $Q_{2 C}$
$\omega_{\mathrm{p} 2} \approx \frac{1}{\mathrm{R}_{1 \mathrm{C}} \mathrm{C}_{\mathrm{p} 1}} \approx \frac{\mathrm{~g}_{\mathrm{m} 1 \mathrm{C}}}{\mathrm{C}_{\mathrm{p} 1}}$ ，where $\mathrm{R}_{1 \mathrm{C}} \approx \mathrm{R}_{\mathrm{elc}}\left\|\mathrm{r}_{\mathrm{O}(\mathrm{Q} 16)}\right\| \mathrm{r}_{\mathrm{O}(\mathrm{Q} 1)} \approx \mathrm{R}_{\mathrm{elc}}=\frac{1}{\mathrm{~g}_{\mathrm{mlc}}}$
－The transconductance of BJT can be much larger than that of CMOS
$\Rightarrow \omega_{\mathrm{p} 2}$ can be increased
$\Rightarrow \omega_{u}$ can be increased while enough phase margin is maintained
\Rightarrow Wider bandwidth than that of CMOS folded－ cascode OPAMP

Fully Differential CMOS Switched－Capacitor Circuit

－Power supply rejection is high
－Larger chip area compared with single－ended output
－Output swing is doubled
－Dynamic range（DR）is 6dB greater than single－ended OPAMPs
－The effect of clock feedthrough noise is minimized by the differential configuration since it will appear as a common－mode signal．

Fully Differential OPAMPs

－Fully differential signal paths
－Differential input and differential output
－Used in most modern high－performance analog ICs
－Help reject noise from the substrate as well as from switches turning off in switched－capacitor applications．
－Ideally，noise affects both signal paths identically and will then be rejected since only the difference between signals is important．
－In reality，this rejection only partially occurs since the mechanisms introducing the noise are usually nonlinear with respect to voltage levels．For example， substrate noise will usually feed in through junction capacitances，which are nonlinear with voltage．
－Certainly，the noise rejection of a fully differential design will be much better than that for a single－ended output design．（＞20dB can be expected）
－Common－mode feedback（CMFB）circuit must be added to establish the common－ mode（i．e．average）output voltage．
－Reduced slew rate in one direction（compared to single－ended design）
－Maximum current for slewing is often limited by fixed－bias currents in the output stages．

Fully Differential Folded－Cascode OPAMP

－Cascode current source
（Rather than self－biased current mirror）

Fully Differential Folded－Cascode OPAMP（Cont．）

－CMFB circuit forces the average of the two outputs to a predetermined value
－Maximum negative slew rate is limited by $I_{D 7}$ and $I_{D 9}$
－Dominant pole ：output node
2nd pole ：node at M_{1}（or M_{2} ）drain
－ n －channel input and p －channel for M_{5} and M_{6}
＞High transconductance
＞High gain
－ p －channel input and n －channel for M_{5} and M_{6}
＞Maximize 2nd pole frequency
＞Unity－gain bandwidth can be maximized．

Common－Mode Feedback（CMFB）Circuits

－Force output common－mode voltage to a predetermined value
－CMFB is often the most difficult part of the OPAMP to design．
－Two typical approaches
－Continuous－time
＞Limited signal swing
－Switched－capacitor
＞Used in switched－capacitor circuits
＞Signal swings are not limited
＞Becomes a source of noise
＞Increases load capacitance
－By having as few nodes in the common－mode loop as is possible， compensation is simplified without having to severely limit the speed of the CMFB circuit．For this reason，the CMFB circuit is usually used to control current sources in the output stage of the OPAMP．

CMFB Circuits

－A continuous－time CMFB circuit

－The circuit can not operate correctly if the OPAMP output voltage is so large that transistors in the differential pairs turn off．
－When common－mode voltage is zero

$$
\mathrm{I}_{\mathrm{D} 2}=\frac{\mathrm{I}_{\mathrm{B}}}{2}+\Delta \mathrm{I}, \quad \mathrm{I}_{\mathrm{D} 3}=\frac{\mathrm{I}_{\mathrm{B}}}{2}-\Delta \mathrm{I}, \quad \mathrm{I}_{\mathrm{D} 5}=\mathrm{I}_{\mathrm{B}}
$$

CMFB Circuits（Cont．）

－Operational principle of CMFB circuits
－For example，when a positive common－mode signal is present $\rightarrow \mathrm{I}_{\mathrm{M} 2}$ and $\mathrm{I}_{\mathrm{M} 3}$ increase $\rightarrow \mathrm{I}_{\mathrm{M} 5}$ increase $\rightarrow \mathrm{V}_{\text {cntrl }}$ increase
－ $\mathrm{V}_{\text {cntrl }}$ sets the current levels in the n －channel current sources at the output of the OPAMP，thus，bringing the common－mode voltage back to V_{CM}
－If the common－mode loop gain is large enough，and the differential signals are not so large as to cause transistors in the differential pairs to turn off，the common－mode output voltage will be kept very close to V_{CM} ．

CMFB Circuits（Cont．）

－A switched－capacitor circuit

－Using larger capacitance values overloads the OPAMP
－Reducing the capacitors too much caused common－mode offset voltages due to charge injection of the switches．

$$
\frac{\mathrm{V}_{\text {out }}^{+}+\mathrm{V}_{\text {out }}^{-}}{2}-\mathrm{V}_{\text {cntrl }} \approx \mathrm{V}_{\mathrm{CM}}-\mathrm{V}_{\text {bias }}
$$

Common－Mode Voltage of OPAMP

－Take inverting amplifier（with ac gain＝1）for example

Single－ended amplifier

Set by previous stage
－Single－ended amplifier
－Input common－mode voltage at $\mathrm{V}^{-}=\mathrm{V}_{\mathrm{CM}}$（Virtually shorted to V^{+}）
－Output common－mode voltage at $\mathrm{V}_{\mathrm{O}(\mathrm{CM})}=\mathrm{V}_{\mathrm{CM}}-\left(\mathrm{V}_{\mathrm{I}(\mathrm{CM})}-\mathrm{V}_{\mathrm{CM}}\right)$
－Fully－differential amplifier
－Input common－mode voltage at $\mathrm{V}^{+}=\mathrm{V}^{-}=\frac{1}{2}\left(\mathrm{~V}_{\mathrm{I}(\mathrm{CM})}+\mathrm{V}_{\mathrm{O}(\mathrm{CM})}\right)$
－Output common－mode voltage at $\mathrm{V}_{\mathrm{O}(\mathrm{CM})} \rightarrow$ Set by CMFB with $\mathrm{V}_{\text {os（CMFB）}}$ and large $\mathrm{V}_{\text {os（diff）}}$

$\mathrm{V}_{\text {in }} \xlongequal{V_{C M}}$
$\longrightarrow G N D$

Appendix

－ 741 OPAMP
－Modern techniques for the BJT OPAMP
－Rail－to－rail input common－mode OPAMP
－Bias design
－Input stage design
－Common－mode feedback（CMF）
－Output stage with near rail－to－rail output swing
－Full version of the output stage
－Buffer／driver stage
－Output－stage current sensing
－Feedback for the current of inactive transistor
－Minimum current in the inactive output transistor

741 OPAMP

－Uses a large number of transistors but relatively few resistors and only one capacitor
$-R$ and C occupy large silicon area ．
－C need more fabrication steps
－High－quality R\＆C are not easy to fabricate．
－Circuit Diagram in the next page．

741 OPAMP（Cont．）

Basic Parts of 741 OPAMP

－Bias circuit
$-I_{\text {ref }}$ is generated by $Q_{11}, Q_{12}, Q_{10}, R_{4}, Q_{8}, Q_{9}, Q_{13}$
－Double－collector PNP Q_{13}

－Current mirror

$$
\frac{\mathrm{I}_{\mathrm{y}}}{\mathrm{I}_{\mathrm{x}}}=\frac{\mathrm{A}_{\mathrm{E}\left(\mathrm{Q}_{\mathrm{y}}\right)}}{\mathrm{A}_{\mathrm{E}\left(\mathrm{Q}_{\mathrm{x}}\right)}}
$$

Basic Parts of 741 OPAMP（Cont．）

－Short－circuit protection circuitry
$-\mathrm{R}_{6}, \mathrm{R}_{7}, \mathrm{Q}_{15}, \mathrm{Q}_{21}, \mathrm{Q}_{24}, \mathrm{Q}_{22}$
－ 741 OPAMP consists of 3 stages
－Input differential stage
－Single－ended high－gain stage
－Output－buffering stage
－Input stage
－$Q_{1} \sim Q_{7}, R_{1} \sim R_{3}$
－Biased by $Q_{8} \sim Q_{10}$ to provide high input impedance．
$-Q_{3} \& Q_{4}$ are lateral PNP（low β ）
Higher emitter－base junction breakdown than NPNs
＞Protect input transistors $Q_{1} \& Q_{2}$ when they are accidentally shorted to supply voltages．
$-Q_{5} \sim Q_{7}, R_{1} \sim R_{3}$ provide high－resistance load and single－ended output．

Basic Parts of 741 OPAMP（Cont．）

－Second stage
$-Q_{16}, Q_{17}, Q_{13 B}, R_{8}, R_{9}$
$-Q_{16}$ acts as an emitter follower，thus giving
＞High input resistance
＞Low base current if R_{9} is large，hence low loading of the first stage．
－Q_{17} ：common emitter configuration
－$Q_{13 B}$ ：active load
－ C_{c} ：Miller capacitor for pole－splitting compensation 30 pF area occupied is about 13 times that of a standard NPN transistor．
－Output stage
－Provide low output resistance
－Class AB

DC Analysis of 741 OPAMP

－Device parameters
－Standard transistors
NPN：$I_{S}=10^{-14} \mathrm{~A}, \beta=200, \mathrm{~V}_{\mathrm{A}}=125 \mathrm{~V}$
PNP：$I_{S}=10^{-14} \mathrm{~A}, \beta=50, \mathrm{~V}_{\mathrm{A}}=50 \mathrm{~V}$

- Nonstandard transistors $\mathrm{Q}_{13}, \mathrm{Q}_{14}, \mathrm{Q}_{20}$

$$
\text { 1. } \begin{aligned}
& Q_{13}=Q_{13 A}+Q_{13 B} \\
& Q_{13 A}: I_{S A}=0.25 \times 10^{-14} \mathrm{~A} \\
& Q_{13 B}: I_{S B}=0.75 \times 10^{-14} \mathrm{~A} \\
& \text { 2. } Q_{14} \& Q_{20} \\
& I_{S}=3 \times 10^{-14} \mathrm{~A}
\end{aligned}
$$

－Reference bias current

－For $\mathrm{V}_{\mathrm{CC}}=-\mathrm{V}_{\mathrm{EE}}=15 \mathrm{~V}^{5}$

$$
V_{B E 11}=V_{B E 12} \approx=0.7 \mathrm{~V}
$$

$$
\Rightarrow I_{\mathrm{REF}} \approx 0.73 \mathrm{~mA}
$$

Input Stage Bias

－Widlar current sources
－Bipolar

$$
\begin{aligned}
& V_{B E 11}-V_{B E 10}=I_{C 10} R_{4} \\
& \Rightarrow V_{T} \ln \frac{I_{R E F}}{I_{C 10}}=I_{C 10} R_{4}
\end{aligned}
$$

\Rightarrow Trial and error to determine $I_{C 10}$
$\Rightarrow I_{C 10}=19 \mu \mathrm{~A}$
－MOSFET

$$
\begin{aligned}
& V_{O V 11}=V_{O V 10}+I_{D 10} \times R_{4}{ }^{\prime} \\
& \text { assume } I_{D}=K \cdot V_{O V}{ }^{2} \Rightarrow \sqrt{\frac{I_{R E F}}{K}}=\sqrt{\frac{I_{D 10}}{K}}+\left(\sqrt{I_{D 10}}\right)^{2} \times R_{4}{ }^{\prime} \\
& \sqrt{I_{D E 1}}=\frac{-\sqrt{\frac{1}{K}} \pm \sqrt{\frac{1}{K}+4 R_{4}{ }^{\prime} \sqrt{\frac{I_{R E F}}{K}}}}{2 R_{4}{ }^{\prime}}>0 \\
& \Rightarrow I_{D 10}=\frac{1+2 R_{4}{ }^{\prime} \sqrt{K I_{R E F}}-\sqrt{1+4 R_{4}{ }^{\prime} \sqrt{K I_{R E F}}}}{2 K\left(R_{4}{ }^{\prime}\right)^{2}}
\end{aligned}
$$

Input Stage Bias（Cont．）

－Input differential circuitry

$$
\text { Let } \begin{aligned}
I_{C 1} & =I_{C 2}=I \Rightarrow I_{\mathrm{E} 3}=I \\
I_{B 3} & =I_{B 4}=\frac{I}{1+\beta_{\mathrm{P}}} \approx \frac{I}{\beta_{\mathrm{P}}} \\
\mathrm{I}_{\mathrm{C} 9} & =\frac{2 \mathrm{I}}{1+\frac{2}{\beta_{\mathrm{P}}}}
\end{aligned}
$$

$$
I_{C 10} \approx 2 I \Rightarrow I=9.5 \mu A
$$

$$
\mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{C} 2} \cong \mathrm{I}_{\mathrm{C} 4}=9.5 \mu \mathrm{~A}
$$

$-\mathrm{Q}_{1} \sim \mathrm{Q}_{4}, \mathrm{Q}_{8}, \mathrm{Q}_{9}$ form a negative feedback loop The feedback stabilize the value of I（i．e．I is kept unchanged and only controlled by $\mathrm{I}_{\mathrm{C} 10}$ ）

Input Stage Bias（Cont．）

－Active load

$$
\begin{aligned}
& -\mathrm{I}_{\mathrm{C}_{5}} \approx \mathrm{I}_{\mathrm{C}_{6}} \approx \mathrm{I} \\
& I_{C_{7}} \approx I_{E_{7}}=\frac{2 I}{\beta_{N}}+\frac{V_{B E_{6}}+I R_{2}}{R_{3}} \\
& \\
& V_{B E_{6}}=V_{T} \ln \frac{I}{I_{S}}=517 m V \\
& \Rightarrow I_{C_{7}} \approx 10.5 \mu \mathrm{~A}
\end{aligned}
$$

Gain stage with resistor load（Cont．）

－Resistor Load
$A=g_{m}\left(R_{0} / / r_{0}\right)$
$\approx \mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{o}}$
$\propto \frac{\mathrm{I}_{\mathrm{C}} \mathrm{R}_{0}}{\mathrm{~V}_{\mathrm{T}}}$
－For High gain

$>$ High $I_{c} R_{0}$
$>$ High $I_{c} R_{o}$ means large voltage drop on R_{o}
＞Large power supply
－High R_{0} reduces speed
－Use active loads to overcome the above problems

Gain Stage with Active Load

－Transistor can provide large resistance if properly biased．
－Example

$$
\begin{aligned}
\mathrm{A} & =\mathrm{g}_{\mathrm{m}}\left(\mathrm{r}_{01} / / \mathrm{r}_{02}\right) \\
& \approx \mathrm{g}_{\mathrm{m}}\left(\frac{1}{2} \mathrm{r}_{0}\right) \\
& \propto \frac{\frac{1}{2} \mathrm{I}_{\mathrm{c}} \mathrm{r}_{0}}{\mathrm{~V}_{\mathrm{T}}}
\end{aligned}
$$

－I－V curve \＆load line

Input bias

－Input bias
－Input current

$$
\mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=\frac{\mathrm{I}}{\beta_{\mathrm{N}}}=\frac{9.5 \mu \mathrm{~A}}{200}=47.5 \mathrm{nA}
$$

\Rightarrow very small
－Offset current and offset voltage are introduced in chapter 6
－Input common－mode range

- In this range，the input stage remains in the linear active mode
－This range is determined at the upper end by saturation of Q_{1} and Q_{2} ，and at the lower end by saturation of Q_{3} and Q_{4} ．

Second Stage Bias

－ $\mathrm{I}_{\mathrm{C} 13 \mathrm{~B}}=0.75 \mathrm{I}_{\mathrm{C} 12} \approx 0.75 \mathrm{I}_{\mathrm{REF}} \approx 550 \mu \mathrm{~A}$ $\mathrm{I}_{\mathrm{C} 17} \approx \mathrm{I}_{\mathrm{C} 13 \mathrm{~B}}=550 \mu \mathrm{~A}$
$\mathrm{V}_{\mathrm{BE}_{17}}=\mathrm{V}_{\mathrm{T}} \ln \frac{\mathrm{I}_{\mathrm{C}_{17}}}{\mathrm{I}_{\mathrm{S}}}=618 \mathrm{mV}$
$\mathrm{I}_{\mathrm{C}_{16}} \approx \mathrm{I}_{\mathrm{E}_{16}}=\mathrm{I}_{\mathrm{B}_{17}}+\frac{\mathrm{I}_{\mathrm{E}_{17}} \mathrm{R}_{8}+\mathrm{V}_{\mathrm{BE}_{7}}}{\mathrm{R}_{9}} \approx 16.2 \mu \mathrm{~A}$

Output Stage Bias

－If short－circuit protection circuitry is omitted

$$
\begin{aligned}
& I_{C_{13 A}}=0.25 I_{R E F} \approx 180 \mu A \\
& I_{B_{23}}=\frac{180}{50}=3.6 \mu A \\
& I_{C_{18}} \approx I_{E_{18}}=180-\frac{V_{B E_{18}}}{R_{10}} \\
& \approx 180-\frac{0.6}{40 \times 10^{3}} \approx 165 \mu A \\
& \quad\left(\mathrm{~V}_{\mathrm{BE} 18}=0.6 \mathrm{~V} \text { is assumed }\right) \\
&=\mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{C} 18}}{\mathrm{I}_{\mathrm{S}}}\right)
\end{aligned}
$$

$\Rightarrow V_{B E 18} \approx 588 \mathrm{mV}$（This is close to the value assumed）

Output Stage Bias（Cont．）

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{C}_{19}} \approx \mathrm{I}_{\mathrm{E}_{19}}=\mathrm{I}_{\mathrm{B}_{18}}+\mathrm{I}_{\mathrm{R}_{10}}=0.8 \mu \mathrm{~A}+\frac{\mathrm{V}_{\mathrm{BE}_{18}}}{\mathrm{R}_{10}} \approx 15.5 \mu \mathrm{~A} \\
& \mathrm{~V}_{\mathrm{BE}_{19}}=\mathrm{V}_{\mathrm{T}} \ln \frac{\mathrm{I}_{\mathrm{C}_{19}}}{\mathrm{I}_{\mathrm{S}}}=530 \mathrm{mV} \\
& \mathrm{~V}_{\mathrm{BE}_{18}}+\mathrm{V}_{\mathrm{BE}_{19}}=588 \mathrm{mV}+530 \mathrm{mV}=1.118 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{T}} \ln \frac{\mathrm{I}_{\mathrm{C}_{14}}}{\mathrm{I}_{\mathrm{S}_{14}}}+\mathrm{V}_{\mathrm{T}} \ln \frac{\mathrm{I}_{\mathrm{C}_{20}}}{\mathrm{I}_{\mathrm{S}_{20}}}=1.118 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{T}} \ln \frac{\mathrm{I}_{\mathrm{C}_{14}} \mathrm{I}_{\mathrm{C}_{20}}}{\mathrm{I}_{\mathrm{S}_{14}} \mathrm{I}_{20}}=1.118 \mathrm{~V} \\
& \Rightarrow \mathrm{I}_{\mathrm{C}_{20}}=\mathrm{I}_{\mathrm{C} 20}=154 \mathrm{uA}
\end{aligned}
$$

Small－Signal Analysis of 741 Input Stage

－Simplified ac schematic
－For differential mode input，biases of Q_{3} and Q_{4} are at ac ground．

－Transconductance

$$
\begin{aligned}
& \frac{v_{i d}}{2}=v_{1}+v_{3} \\
& v_{1} g_{m 1}\left(1+\frac{1}{\beta_{1}}\right)=v_{3} g_{m 3}\left(1+\frac{1}{\beta_{3}}\right)
\end{aligned}
$$

Small－Signal Analysis of 741 Input Stage（Cont．）

$$
\begin{aligned}
& \Rightarrow \frac{v_{i d}}{2}=v_{3}\left[\frac{g_{m 3}\left(1+\frac{1}{\beta_{3}}\right)}{g_{m 1}\left(1+\frac{1}{\beta_{1}}\right)}+1\right] \\
& \text { since }\left|I_{c 3}\right|=I_{c 3}, g_{\mathrm{m} 1}=\mathrm{g}_{\mathrm{m} 3}, \beta_{1}=200 \gg 1, \beta_{3}=50 \gg 1 \\
& \Rightarrow v_{3}=\frac{v_{\mathrm{id}}}{4} \ldots . .(1) \\
& i_{\mathrm{c} 3}=-\frac{g_{m 3} v_{i d}}{4} \\
& i_{\mathrm{c} 4}=\frac{g_{m 3} v_{i d}}{4} \\
& i_{\mathrm{out}}=-i_{c 4}+i_{c 3}=-\frac{g_{m 3} v_{i d}}{2} \\
& G_{m 1}=-\frac{i_{o u t}}{v_{i d}}=\frac{g_{m 1}}{2}=\frac{I_{c 1}}{2 V_{T}} \approx \frac{1}{5.26 k \Omega}
\end{aligned}
$$

Small－Signal Analysis of 741 Input Stage（Cont．）

－Input Resistance $\mathrm{R}_{\text {id }}$

$$
\begin{aligned}
& \operatorname{From}(1), v_{1}=v_{3}=\frac{v_{i d}}{4} \\
& R_{i d}=\frac{v_{i d}}{i_{i}}=\frac{v_{i d}}{\left(V_{1} r_{r_{1}}\right)}=4 r_{\pi 1}=4\left(\beta_{1}+1\right) r_{e}=2.1 \mathrm{M} \Omega \\
& \text { where } r_{e}=\frac{V_{T}}{I_{C}}=\frac{25 \mathrm{mV}}{9.5 \mu \mathrm{~A}}=2.63 \mathrm{~K} \Omega=\frac{1}{g_{m}}
\end{aligned}
$$

Small－Signal Analysis of 741 Input Stage（Cont．）

－Output resistance R_{01}－simplified circuit

－Refer to chapter 6

$$
\begin{aligned}
& >R_{04}=r_{o(Q 4)}\left\{1+g_{m_{4}}\left(r_{\mathrm{e}} / / r_{\pi 4}\right)\right\} \cong 10.5 \mathrm{M} \Omega \\
& >\mathrm{R}_{06}=\mathrm{r}_{\mathrm{o}(Q 6)}\left\{1+\mathrm{g}_{\mathrm{m} 6}\left(\mathrm{R}_{2} / / \mathrm{r}_{\pi 6}\right)\right\} \cong 18.2 \mathrm{M} \Omega \text { where } \mathrm{r}_{\mathrm{o}}=\mathrm{V}_{\mathrm{A}} / \mathrm{l}
\end{aligned}
$$

$-R_{01}=R_{04} / / R_{06} \cong 6.7 \mathrm{M} \Omega$
－Two－port equivalent circuit of input stage

Small－Signal Analysis of the 741 Second Stage

－Simplified circuit

－Input resistance $\mathrm{R}_{\mathrm{i} 2}$
－$R_{i 17}=\left(\beta_{17}+1\right)\left(r_{e 17}+R_{8}\right)$
－ $\mathrm{R}_{\mathrm{i} 2}=\left(\beta_{16}+1\right)\left(\mathrm{r}_{\mathrm{e} 16}+\left(\mathrm{R}_{9} / / \mathrm{R}_{\mathrm{i} 17}\right)\right) \cong 4 \mathrm{M} \Omega$

Small－Signal Analysis of the 741 Second Stage（Cont．）

－Transconductance $G_{m 2}$
－Voltage gain of the emitter follower Q_{16} is nearly unity．

$$
\begin{aligned}
& v_{i 2}=i_{b 17} r_{\pi 17}+\left(i_{b 17}+i_{c 17}\right) R_{8}=\frac{i_{c 17}}{\beta_{17}} r_{\pi 17}+i_{c 17}\left(1+\frac{1}{\beta_{17}}\right) R_{8} \\
& =i_{c 17}\left[\frac{1}{g_{m 17}}+\left(1+\frac{1}{\beta_{17}}\right) R_{8}\right] \approx i_{c 17}\left(\frac{1+g_{m 17} R_{8}}{g_{m 17}}\right) \\
& \Rightarrow G_{m 2}=\frac{i_{c 17}}{v_{i 2}} \approx \frac{g_{m 17}}{1+g_{m 17} R_{8}} \approx 6.5 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

Small－Signal Analysis of the 741 Second Stage（Cont．）

－Output Resistance
－ $\mathrm{R}_{\mathrm{o2}}=\mathrm{R}_{017} / / \mathrm{R}_{013 \mathrm{~B}}$
－$R_{013 B}=r_{0(Q 13 B)}$
－$R_{017} \cong r_{o(Q 17)}\left[1+\mathrm{gm}_{17}\left(R_{8} / / r_{\pi 17}\right)\right]$
－ $\mathrm{R}_{\mathrm{o2}}=\mathrm{R}_{\mathrm{o17}} / / \mathrm{R}_{\mathrm{o} 13 \mathrm{~B}} \cong 787 \mathrm{k} \Omega / / 90.9 \mathrm{k} \Omega \cong 81 \mathrm{k} \Omega$

741 Output Stage

－Output voltage limits
$-V_{\text {omax }}=V_{C C}-\left|V_{C E 13 A(\text { sat）}}\right|-V_{B E 14}$
－ $\mathrm{V}_{\text {omin }}=-\mathrm{V}_{\mathrm{EE}}+\mathrm{V}_{\mathrm{CE} 17 \text {（sat）}}+\mathrm{V}_{\mathrm{EB} 23}+\mathrm{V}_{\mathrm{EB} 20}$

Small－Signal Analysis of the 741 Output Stage

－Simplified circuit for positive $\mathrm{V}_{0}, \mathrm{~V}_{\mathrm{BE} 14}>\mathrm{V}_{\mathrm{EB} 20}$

Small－Signal Analysis of the 741 Output Stage（Cont．）

－Input resistance R_{i}
－For positive V_{0} with Q_{20} neglected $\left(\mathrm{Q}_{14}\right.$ conducts more current）

$$
\begin{aligned}
& R_{i 14}=r_{\pi 14}+\left(1+\beta_{14}\right) R_{L} \\
& R_{\text {eq3 }}^{+}=r_{d 18}+r_{d 19}+\left(r_{o(Q 13 A)} / / R_{i 14}\right) \text { where } r_{d 18}+r_{d 19} \text { is very small. } \\
& R^{+}{ }_{i 3}=r_{\pi 23}+\left(1+\beta_{23}\right) R^{+}{ }_{e q 3}
\end{aligned}
$$

- For negative V_{0} with Q_{14} neglected（ Q_{20} conducts more current）
$R_{i 20}=r_{\pi 20}+\left(1+\beta_{20}\right) R_{L}$
$R_{\text {eq3 } 3}^{-}=r_{d 18}+r_{d 19}+r_{0(Q 13 A)}$ where $r_{d 18}+r_{d 19}$ is very small．
$R_{i 3}^{-}=r_{\pi 23}+\left(1+\beta_{23}\right)\left(R_{\text {eq3 }}^{-} / / R_{i 20}\right)$
－Actual $R_{i 3}$ is between $\mathrm{R}_{i 3}^{+}$and $\mathrm{R}_{\mathrm{i3}}^{-}$

Small－Signal Analysis of the 741 Output Stage（Cont．）

－Output Resistance $R_{\text {out }}$
－For positive V_{0} with Q_{20} neglected
$\mathrm{R}_{\text {out }}^{+} \approx \mathrm{R}_{\text {ol4 }}$
$R_{e q 4}=r_{o(Q 13 A)} / /\left[r_{d 19}+r_{d 18}+r_{e 23}+\frac{R_{\mathrm{o} 2}}{1+\beta_{23}}\right]$
$R_{o 14}=r_{\text {el4 }}+\frac{R_{\text {eq } 4}}{1+\beta_{14}}$

- For negative V_{0} with Q_{14} neglected
$\mathrm{R}_{\text {out }}^{-} \approx \mathrm{R}_{\mathrm{o} 20}$
$\mathrm{R}_{\mathrm{O} 23}=\mathrm{r}_{\mathrm{e} 23}+\frac{\mathrm{R}_{02}}{1+\beta_{23}}$
$R_{020}=r_{e 20}+\frac{R_{e q 3} / / R_{\text {o23 }}}{1+\beta_{20}}$
－Actual $\mathrm{R}_{\text {out }}$ is between $\mathrm{R}^{+}{ }_{\text {out }}$ and R^{-}out

Small－Signal Analysis of the 741 Output Stage（Cont．）

－Small－signal equivalent circuit model

Gain and Frequency Response of the 7410PAMP

－Equivalent circuit of the 741 OPAMP

－Gain
$\frac{V_{o}}{V_{i}}=\frac{V_{i 2}}{V_{i}} \times \frac{V_{o 2}}{V_{i 2}} \times \frac{V_{o}}{V_{o 2}}$
$=\left[-G_{m 1}\left(R_{o 1} / / R_{i 2}\right)\right] \times\left[-G_{m 2} R_{o 2}\right] \times G_{v o 3} \times \frac{R_{L}}{R_{\text {out }}+R_{L}}$
$\approx 107.7 \mathrm{~dB}$

Gain and Frequency Response of 741 OPAMP（Cont．）

－Frequency Response
$\rightarrow 741$ is an internally compensated OPAMP
－Miller Compensation

$$
\begin{aligned}
& \text { C } C_{i}=C_{C}\left(1+\left|A_{2}\right|\right)--- \text { Miller theorem } \\
& A_{2}=-G_{m_{2}} R_{O_{2}}\left(\frac{R_{i_{3}}}{R_{O_{2}}+R_{i_{3}}}\right)=-526.5 \times 0.978 \approx-515 \\
& \Rightarrow \mathrm{C}_{\mathrm{i}} \approx 30 \mathrm{pF} \cdot(1+|-515|)=15480 \mathrm{pF}
\end{aligned}
$$

Gain and Frequency Response of 741 OPAMP（Cont．）

－Neglecting the parasitic capacitance at the base of Q_{16}
－Total resistance at this node $\mathrm{R}_{\mathrm{t}}=\left(\mathrm{R}_{\mathrm{O} 1} / / \mathrm{R}_{\mathrm{i} 2}\right)$
\Rightarrow Dominant pole $\mathrm{f}_{\mathrm{p}}=\frac{1}{2 \pi R_{t} C_{i}} \approx 4.1 \mathrm{~Hz}$
－Bode plot（Neglecting nondominant poles）

－ 3 dB bandwidth $\mathrm{f}_{3 \mathrm{~dB}}=\mathrm{f}_{\mathrm{p}}=4.1 \mathrm{~Hz}$ unity－gain bandwidth $f_{t}=A_{0} f_{3 d B}=1 \mathrm{MHz}$

Gain and Frequency Response of 741 OPAMP（Cont．）

－Simplified model
－Model the $2^{\text {nd }}$ stage as an integrator

$$
\begin{aligned}
& A(s)=\frac{V_{O}(s)}{V_{i}(s)}=\frac{G_{m 1}}{s C_{C}} \Rightarrow A(j \omega)=\frac{G_{m 1}}{j \omega C_{C}} \\
& \left|A\left(j \omega_{t}\right)\right|=1 \Rightarrow \omega_{t}=\frac{G_{m 1}}{C_{C}}
\end{aligned}
$$

$$
\text { For } G_{m 1}=\frac{1}{5.26 k \Omega} \text { and } C_{C}=30 p F, f_{t}=\frac{\omega_{t}}{2 \pi} \approx 1 M H z
$$

（equal to the value calculated before）

Slew Rate

－Large signal behavior
－Output voltage slew limitation

$$
\begin{aligned}
& \left.\frac{d V}{d t}\right|_{\max }=\text { slew rate }=\frac{2 I}{C_{C}} \\
& f_{t}=\frac{G_{m 1}}{2 \pi C_{C}} \quad \text { (as shown previously) }
\end{aligned}
$$

$$
\Rightarrow \text { slew rate }=\frac{4 \pi I}{G_{m 1}} f_{t}
$$

$$
G_{m 1}=\frac{I}{2 V_{T}}=\frac{1}{2} g_{m 1}
$$

$$
\text { slew rate }=8 \pi V_{T} f_{t}
$$

Modern Techniques for the BJT OPAMP

－Reasons for single－supply operation with much lower $V_{C C}$
－Meet modern small－feature－size fabrication technologies
－Be compatible with other low－power－supply systems
－Minimize the power dissipation， $\mathrm{P}=\mathrm{I}_{\mathrm{VD}} \cdot \mathrm{V}_{\mathrm{DD}}$ ，especially for battery－operated systems

－For a low－voltage single－supply system，rail－to－rail input common－mode range may be required because of its inherent low supply voltages

Rail－to－Rail Input Common－Mode OPAMP

Bias Design

－Widlar current source

$$
\begin{aligned}
& V_{B E 1}=V_{T} \ln \left(\frac{I}{I_{S}}\right) \\
& \mathrm{V}_{\mathrm{BE} 2}=\mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}}{\mathrm{I}_{\mathrm{S} 2}}\right) \\
& \Rightarrow \mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}=\mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{S} 2}}{\mathrm{I}_{\mathrm{S} 1}}\right)=\mathrm{I} \times \mathrm{R}_{2 \mathrm{~b}} \\
& \Rightarrow \mathrm{I}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{R}_{2 \mathrm{~b}}} \ln \left(\frac{\mathrm{I}_{\mathrm{S} 2}}{\mathrm{I}_{\mathrm{S} 1}}\right)
\end{aligned}
$$

-I is independent of V_{CC}

－I is directly PTAT，proportional to absolute temperature Mirrored transistors＇$g_{m}=\frac{\mathrm{I}}{\mathrm{V}_{\mathrm{T}}}$ are independent of temperature

Input Stage Design

－With active load

$$
\begin{aligned}
& V_{E C 1}>\left|V_{E C \text { sat }}\right| \approx 0.1 \mathrm{~V} \\
& V_{I C M \text { min }}=V_{C 1}-0.6=V_{B E 3}-0.6=0.1
\end{aligned}
$$

－With passive load
－$V_{I C M \text { min }}=V_{R_{c}}-0.6$
if $V_{R_{C}}$ is selected to $0.2 \mathrm{~V} \sim 0.3 \mathrm{~V}$
$\rightarrow V_{I C M \text { nin }}$ will be $-0.4 \mathrm{~V} \sim-0.3 \mathrm{~V}$
－Differential gain is degraded

$$
A=-g_{m 1,2} R_{C}=-\frac{I / 2}{V_{T}} R_{C}=-\frac{V_{R_{C}}}{V_{T}}
$$

－$V_{I C M \text { max }}=V_{C C}-\left|V_{E C s a t}\right|-V_{E B 1}$

$$
=V_{C C}-0.1-0.7=V_{C C}-0.8
$$

Input Stage Design（Cont．）

－Assume that $V_{R_{c}}=0.3 \mathrm{~V}$
－For pnp differential－pair（previous page）

$$
-0.3 \leq V_{I C M} \leq V_{C C}-0.8
$$

－For npn differential－pair（right figure）

$$
0.8 \leq V_{I C M} \leq V_{C C}+0.3
$$

－Connecting the two circuits in parallel
－A rail－to－rail $V_{\text {ICM }}$ range

$$
-0.3 \leq V_{I C M} \leq V_{C C}+0.3
$$

－For the overlap region $0.8 \leq V_{I C M} \leq V_{C C}-0.8$ ，both pnp and npn circuits are active
\rightarrow higher effective transconductance（X2）\rightarrow higher gain
－Adding a folded－cascode stage can also increase gain

Common－Mode Feedback（CMF）

－Without CMF
Two mismatched BJT－pairs，i．e．$\left(Q_{9}-Q_{10}\right)$ and（ $Q_{7}-Q_{8}$ ）
\rightarrow An increment ΔI will be multiplied by large $R_{\text {out }}$
\rightarrow Large changes at $v_{o l} \& v_{o 2}$
\rightarrow One set of BJT－pair saturates
－With CMF
－It ensures $Q_{7,8}$ remain active
－$V_{C M}$ is regulated

$$
\text { if } V_{C M} \uparrow \Rightarrow V_{B} \uparrow \Rightarrow I_{7,8} \uparrow \Rightarrow V_{C M} \downarrow
$$

CMF Circuit Configuration

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CM}}=\left(\mathrm{V}_{\mathrm{O} 1}+\mathrm{v}_{\mathrm{o} 2}\right) / 2 \\
& \mathrm{~V}_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{CM}}+\frac{\mathrm{v}_{\mathrm{d}}}{2} \\
& \mathrm{~V}_{\mathrm{o} 2}=\mathrm{V}_{\mathrm{CM}}-\frac{\mathrm{v}_{\mathrm{d}}}{2} \\
& \mathrm{Q}_{11} \sim \mathrm{Q}_{14} \text { act as emitter followers } \\
& \mathrm{V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{CM}}+\mathrm{V}_{\mathrm{EB} 11,12}-\mathrm{V}_{\mathrm{EB} 13,14} \\
& \approx \mathrm{~V}_{\mathrm{CM}} \\
& \Rightarrow \mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{CM}}+0.4 \\
& \mathrm{~V}_{\mathrm{D}}: \mathrm{Voltage} \text { drop of Schottky barrier diode }
\end{aligned}
$$

Output Stage with Near Rail－to－Rail Output Swing

－Classical emitter－follower－based class AB output stage would consume too much supply voltage
\rightarrow Smaller output－swing range
－Utilizing a pair of common－emitter transistors
$\rightarrow 0.1 \mathrm{~V} \approx V_{\text {CENsat }} \leq v_{O} \leq V_{C C}-V_{\text {CEPsat }} \approx V_{C C}-0.1 \mathrm{~V}$
－When $v_{B P}$ and $v_{B N}$ are high
－Q_{N} supplies the load current
－Q_{P} is inactive
To minimize crossover distortion，Q_{P} is forced to bias at about $I_{Q} / 2$ instead of being turned－off
－The similar but opposite behavior happens when $v_{B P}$ and $v_{B N}$ are low

Full Version of the Output Stage

Buffer／Driver Stage

－Q_{P} and Q_{N} may need to supply large load current
\rightarrow Base currents of Q_{P} and Q_{N} will be substantial since $\beta_{P} \approx 10$ and $\beta_{N} \approx 40$
\rightarrow Driver stages are added
－Q_{3} is used to drive Q_{N}
－Q_{1} and Q_{2} are used to drive Q_{P} because of the low β_{P}

Buffer／driver Output stage

Output－Stage Current Sensing

$$
\begin{aligned}
& \text { assume } R_{4}=R_{5} \text { and } \frac{I_{S P}}{I_{S 4}}=\frac{I_{S N}}{I_{S 5}} \\
& \begin{array}{l}
v_{B 6}=v_{B E 5}+i_{C 4} R_{5}=v_{B E 5}+i_{C 4} R_{4} \\
\\
=v_{B E 5}+v_{B E P}-v_{B E 4}
\end{array} \\
& \quad=V_{T} \ln \left(\frac{i_{C 4}}{I_{S 5}} \cdot \frac{i_{P}}{I_{S P}} \cdot \frac{I_{S 4}}{i_{C 4}}\right) \\
& \quad=V_{T} \ln \left(\frac{i_{P}}{I_{S N}}\right) \\
& v_{E}=v_{B 6}+v_{B E 6}=v_{B 7}+v_{B E 7} \\
& \Rightarrow \frac{i_{P}}{I_{S N}} \cdot \frac{i_{C 6}}{I_{S 6}}=\frac{i_{N}}{I_{S N}} \cdot \frac{i_{C 7}}{I_{S 7}} \\
& \text { assume } I_{S 6}=I_{S 7} \Rightarrow i_{P} \cdot i_{C 6}=i_{N} \cdot i_{C 7} \\
& i_{C 6}=I \cdot \frac{i_{N}}{i_{P}+i_{N}} \text { and } i_{C 7}=I \cdot \frac{i_{P}}{i_{P}+i_{N}}
\end{aligned}
$$

Output－Stage Current Sensing（Cont．）

$$
\begin{aligned}
& \text { since } i_{C 6}=I \cdot \frac{i_{N}}{i_{P}+i_{N}} \text { and } i_{C 7}=I \cdot \frac{i_{P}}{i_{P}+i_{N}} \\
& \begin{aligned}
& v_{E}=v_{B 7}+v_{B E 7}=V_{T} \ln \left(\frac{i_{N}}{I_{S N}} \cdot \frac{i_{C 7}}{I_{S 7}}\right) v_{E} \\
& \quad=v_{B 7}+v_{B E 7}=V_{T} \ln \left(\frac{i_{N}}{I_{S N}} \cdot \frac{i_{C 7}}{I_{S 7}}\right) \\
& \quad=V_{T} \ln \left(\cdot\left(\frac{i_{P} \cdot i_{N}}{i_{P}+i_{N}} \cdot \frac{I}{I_{S N} I_{S 7}}\right)\right. \\
& \text { if } i_{P} \gg i_{N} \Rightarrow v_{E}=V_{T} \ln \left(\frac{i_{N}}{I_{S N}}\right)+V_{E B 7}
\end{aligned}
\end{aligned}
$$

similarly，if $i_{P} \ll i_{N} \Rightarrow v_{E}=V_{T} \ln \left(\frac{i_{P}}{I_{S N}}\right)+V_{E B 6}$

－v_{E} is determined by the current of inactive transistor

Feedback for the Current of Inactive Transistor

－for $i_{P} \gg i_{N}$
$-Q_{N}$ is the inactive transistor
－If i_{N} is too small $\Rightarrow v_{E} \downarrow \Rightarrow i_{C 9} \downarrow$

$$
\Rightarrow v_{I N} \uparrow \Rightarrow i_{N} \uparrow
$$

－for $i_{P} \ll i_{N}$
－Q_{P} is the inactive transistor
－If i_{P} is too small $\Rightarrow v_{E} \downarrow \Rightarrow i_{C 9} \downarrow \Rightarrow i_{C 8} \uparrow$

$$
\Rightarrow v_{I P} \downarrow \Rightarrow i_{C 1} \downarrow \Rightarrow i_{C 2} \uparrow \Rightarrow i_{P} \uparrow
$$

\rightarrow Minimum current of inactive transistor is maintained

Minimum Current in the Inactive Output Transistor

－Assume the loop gain is high enough
since $v_{E}=V_{T} \ln \left(\frac{i_{P} \cdot i_{N}}{i_{P}+i_{N}} \cdot \frac{I}{I_{S N} I_{S 7}}\right)$
and $v_{E}=V_{R E F}=V_{T} \ln \left(\frac{I_{R E F}}{I_{S 10}}\right)+V_{T} \ln \left(\frac{I_{R E F}}{I_{S 11}}\right)$
$\Rightarrow \frac{i_{P} \cdot i_{N}}{i_{P}+i_{N}}=\left(\frac{I_{R E F}^{2}}{I}\right)\left(\frac{I_{S N}}{I_{S 10}}\right)\left(\frac{I_{S 7}}{I_{S 11}}\right)$
In the quiescent case，$i_{P}=i_{N}=I_{Q}$
$\Rightarrow I_{Q}=2\left(\frac{I_{R E F}^{2}}{I}\right)\left(\frac{I_{S N}}{I_{S 10}}\right)\left(\frac{I_{S 7}}{I_{S 11}}\right) \Rightarrow \frac{i_{P} \cdot i_{N}}{i_{P}+i_{N}}=\frac{1}{2} I_{Q}$

$\Rightarrow \begin{cases}i_{P} \approx 0.5 \cdot I_{Q} & \text { for } i_{N} \gg i_{P} \\ i_{N} \approx 0.5 \cdot I_{Q} & \text { for } i_{N} \ll i_{P}\end{cases}$

